scholarly journals ANALISA KEKUATAN BENDING KOMPOSIT EPOXY DENGAN PENGUATAN SERAT NILON

2011 ◽  
Vol 1 (1) ◽  
Author(s):  
Nasmi Herlina Sari ◽  
S. Sinarep

The development of composite materials in the field of engineering is increasingly being used. This is because of its properties are superior compared to conventional materials, as the ratio between strength and density are quite high, stiff, the manufacturing process is very simple and resistant to corrosion and fatigue loads. The purpose of this study was to determine the effect the addition of nylon fibers with Epoxy Matrix on the increase in bending strength of epoxy composites.  The objected of this study was the composite of nylon fiber, which is cut 12 mm nylon fiber with epoxy resin as a fastening material. Before performing an experiment testing the tensile fibers has done and known to the stress of 461.22 MPa. There are 3 variations of volume fraction In this experiment, those are volume fraction of 40%, 50%  and  60%, with 3 variation each.  Method in the manufacture of specimens with the way the mould press. Tools to test the specimen is bending test machine (servopulser). Specimens using a standard test of ASTM C 393-94. Bending test results showed that the nylon fiber composite with fiber volume fraction 40% stress of 787.16 MPa, modulus of elasticity of 1.06 GPa, volume fraction of 50% the stress of 902.01 MPa, modulus of elasticity of 1.08 GPa, and for 60% volume fraction of the stress of 950.02 MPa, modulus of elasticity of 0.99 GPa.

2014 ◽  
Vol 587-589 ◽  
pp. 1132-1136
Author(s):  
Yue Li ◽  
Ping Wang

Uniaxial compression and bending test of CA mortar, which have six different dosage of emulsified asphalt and the same dry material, is carried out with a electronic universal test machine. It turns out that: when the dosage of emulsified asphalt is lacked, the CA mortar cannot be uniform and stable slurry system; within the range of 300~680 mL emulsified asphalt, slurry state of mortar is good, no separation, and have good liquidity, in this range, with the increasing dosage of emulsified asphalt, compressive strength, elastic modulus and peak strain are gradually reduced, while ratio of bending strength to compressive strength rise at the beginning, then decline within a narrow range; The 1st and 2nd slurry is not stable, they appear separation and the surfaced asphalt, which have similar appearance and mechanical properties to cement mortar, and the last four groups of test results have great difference from the former two groups.


Jurnal METTEK ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 128
Author(s):  
I Putu Lokantara ◽  
Ngakan Putu Gede Suardana

Tujuan dari penelitian ini adalah untuk menentukan kekuatan tarik dan kekuatan bending biokomposit limbah plastik polypropylene berpenguat serat lidah mertua. Lidah mertua yang digunakan adalah lidah mertua yang pinggirannya daunnya kuning dengan usia yang seragam. Daun lidah mertua direndam dengan metode water retting selama 7 hari dan proses ekstraksi serat dilakukan secara manual. Polypropylene daur ulang yang digunakan berasal dari limbah plastik minuman gelas. Perlakuan kimia serat lidah mertua dengan konsentrasi 5% NaOH dan waktu perendaman 2 jam. Komposit dicetak dengan menggunakan press panas dengan suhu 200oC dan waktu penahanan 2 jam. Komposit dilakukan pengujian tarik dengan menggunakan ASTM D-570 dan uji bending dengan ASTM 790-03. Hasil uji tarik menunjukkan bahwa kekuatan tarik tertinggi pada fraksi volume 35% sebesar 71,606 MPa. Kekuatan tarik meningkat sebesar 28,9% dari fraksi volume 25% ke fraksi volume 35%.  Hasil uji bending menunjukkan bahwa kekuatan bending tertinggi pada fraksi volume 35% sebesar 74,55 MPa. Kekuatan bending meningkat sebesar 22,9% dari fraksi volume 25% ke fraksi volume 35%. Dengan pengamatan foto mikro SEM, ikatan adhesi antara serat dan matrik terjadi dengan baik pada fraksi volume 35%.      The purpose of this study was to determine the tensile strength and bending strength of lidah mertua fiber reinforced polypropylene. Lidah mertua is used whose leaf margins are yellow with a uniform age. Lidah mertua leaves were soaked by water retting method for 7 days. Fiber is extracted manually by hand. Recycled polypropylene used comes from glass beverage plastic waste. The chemical treatment of lidah mertua fibers 5% NaOH and a soaking time of 2 hours. Composites are molded using a hot press with a temperature of 200oC and a holding time of 2 hours. Composite tensile testing was carried out using ASTM D-570 and bending test with ASTM 790-03. Tensile test results showed that the highest tensile strength at 35% volume fraction was 71,606 MPa. Tensile strength increased by 28.9% from 25% volume fraction to 35% volume fraction. Bending test results showed that the highest bending strength at 35% volume fraction was 74.55 MPa. The bending strength increased by 22.9% from the 25% volume fraction to the 35% volume fraction. By observing SEM micro photographs, the bond between the fiber and the matrix occurs well at 35% volume fraction


2012 ◽  
Vol 2 (2) ◽  
Author(s):  
I Gede Widiartha ◽  
Nasmi Herlina Sari ◽  
S. Sujita

AbstractThe purpose of this study is to investigate and study the mechanical properties of polyethylene strukrur micro hybrid composites reinforced by fibers sisal and jute sacks.Preparation of composites by hand lay-up method with a ratio of fiber volume fraction of sisal and jute sacks 30%: 0%, 20%: 10%, 15%: 15%, 10%: 20%, 0%: 30%. With unidirectional sisal fiber orientation and fiber length random burlap gunny sack fibers 2 cm. Specimen testing is performed with a standard bending test ASTM D790, and microstructure.Test results obtained from the average bending strength of composites with high fiber volume ratio fraksin 30%: 0% is 74.43 Mpa. While the lowest average for bending strength found in composites with fiber volume fraction of 0%: 30%, the bending strength of 32.21 MPa. Therefore we can conclude the increasing volume fraction of sisal fiber with unidirectional fiber orientation, the higher the bending strength of its appeal and reverse the growing volume of burlap fibers with random orientation of the fibers feeding the lower the bending strength and the strength.


2011 ◽  
Vol 391-392 ◽  
pp. 359-363 ◽  
Author(s):  
Wei Geng ◽  
Ye Xiong Qi ◽  
Jia Lu Li

Five-layer biaxial weft knitted (FBWK) fabric is one kind of multilayered biaxial weft knitted (MBWK) fabric. FBWK fabric is made of carbon fiber as inserted yarns and stitched with polyester yarns, and it has been impregnated with epoxy via resin transfer molding (RTM) technique to manufacture the composite plates. The bending properties of the FBWK fabric reinforced composite are studied with the three-point bending test method. The bending properties of the FBWK fabric reinforced composite materials with different fiber volume fraction have been investigated. The results show that the relationship between bending load and deflection is obviously linear before reaching the maximum load. Within a certain range, the bending strength of this kind of composites increases with the fiber volume fraction increasing. When the fiber volume fraction is 57%, the bending strength is 1051.4 MPa.


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Jauhari Muslim ◽  
Nasmi Herlina Sari ◽  
Emmy Dyah Sulistyowati

Abstract The use of composite materials is growing at over the development of manufacturing industry. Composites sansevieria and hibiscus canabinus with the addition of rice husk ash filler. The purpose of this study was to analyze the tensile strength and bending strength of hybrid composites sansevieria and hybiscus canabinus with rice husk ash filler epoxy bermatrik with random fiber direction.Variation of fiber volume fraction sansevieria and hybicus canabinus is 0%:35%,10%:25%, 15%:10%, 20%:15%, 25%:10%, 35%:0%. Method for making composite specimens in the form of hand lay up with a fiber length of 2cm. Testing was done by bending test following the ASTM standard D790 tensile test and ASTM D3039 standards.The results showed that the composites with rice husk ash fillers higher bending strength and the strength of its appeal compared to the composite without using rice husk ash fillers, where the highest bending strength on volume fraction 0%/35% as big as 32,00 MPa (using filler), and kekutan lowest bending the volume fraction 0%/35% as big as 21, 69 Mpa (without filler). While the tensile test has the highest power in the volume fraction 15%/20% as big as 8,24 MPa (using filler), and the lowest tensile strength on volume fraction 0%/35%  as big as 3,43 MPa (without filler).


2021 ◽  
pp. 152808372110003
Author(s):  
M Atta ◽  
A Abu-Sinna ◽  
S Mousa ◽  
HEM Sallam ◽  
AA Abd-Elhady

The bending test is one of the most important tests that demonstrates the advantages of functional gradient (FGM) materials, thanks to the stress gradient across the specimen depth. In this research, the flexural response of functionally graded polymeric composite material (FGM) is investigated both experimentally and numerically. Fabricated by a hand lay-up manufacturing technique, the unidirectional glass fiber reinforced epoxy composite composed of ten layers is used in the present investigation. A 3-D finite element simulation is used to predict the flexural strength based on Hashin’s failure criterion. To produce ten layers of FGM beams with different patterns, the fiber volume fraction ( Vf%) ranges from 10% to 50%. A comparison between FGM beams and conventional composite beams having the same average Vf% is made. The experimental results show that the failure of the FGM beams under three points bending loading (3PB) test is initiated from the tensioned layers, and spread to the upper layer. The spreading is followed by delamination accompanied by shear failures. Finally, the FGM beams fail due to crushing in the compression zone. Furthermore, the delamination failure between the layers has a major effect on the rapidity of the final failure of the FGM beams. The present numerical results show that the gradient pattern of FGM beams is a critical parameter for improving their flexural behavior. Otherwise, Vf% of the outer layers of the FGM beams, i.e. Vf% = 30, 40, or 50%, is responsible for improving their flexural strength.


Author(s):  
Jessica N. McClay ◽  
Peter Joyce ◽  
Andrew N. Smith

Measurements of the in-plane thermal conductivity and the directional dependence of Mitsubishi K63B12 pitch-fiber/Epoxy composite from Newport Composites are reported. This composite is being explored for use in the Avanced Seal Delivery System for effective thermal management. The thermal conductivity was measured using a steady state technique. The experimental results were then compared to a model of the thermal conductivity based on the direction of the fibers. These estimates are based on the properties of the constituent materials and volume of fibers in the sample. Therefore the density and the fiber volume fraction were experimentally measured. The thermal conductivity is clearly greatest in the direction of the fibers and decreases as the fibers are rotated off axis. In the case of pitch fiber composite materials, the contribution of the fibers to the thermal conductivity dominates. The experimental data clearly followed the correct trends; however, the measured values were 25% to 35% lower than predicted.


1990 ◽  
Vol 218 ◽  
Author(s):  
Joseph E. Saliba ◽  
Rebecca C. Schiavone ◽  
Stephen L. Gunderson ◽  
Denise G. Taylor

AbstractThis study was initiated to investigate the structural response of the bessbeetle to determine potential advantageous ramifications and effects on the optimization of synthetic composite materials. The result of the micromechanics sensitivity study of various parameters are presented. Variables such as fiber size and shape, fiber volume fraction, ratio of modulus of elasticity of fiber over matrix, are changed one variable at a time, and the response quantities such as stress and tranverse modulus are presented.


2012 ◽  
Vol 476-478 ◽  
pp. 1568-1571
Author(s):  
Ting Yi Zhang ◽  
Guang He Zheng ◽  
Ping Wang ◽  
Kai Zhang ◽  
Huai Sen Cai

Through the three-point bending test on the specimens of steel fiber reinforced high strength concrete (SFHSC), the effects of influencing factors including water-cement ratio (W/C) and the fiber volume fraction (ρf) upon the critical value(JC) of J integral were studied. The results show that the variation tendencies of JC are different under different factors. JC meets the linear statistical relation with W/C, ρf, respectively.


1992 ◽  
Vol 7 (11) ◽  
pp. 3120-3131 ◽  
Author(s):  
Michael Murat ◽  
Micha Anholt ◽  
H. Daniel Wagner

A discrete model of springs with bond-bending forces is proposed to simulate the fracture process in a composite of short stiff fibers in a softer matrix. Both components are assumed to be linear elastic up to failure. We find that the critical fiber length of a single fiber composite increases roughly linearly with the ratio of the fiber elastic modulus to matrix modulus. The finite size of the lattice in the direction perpendicular to the fiber orientation considerably alters the behavior of the critical length for large values of the modulus ratio. The simulations of the fracture process reveal different fracture behavior as a function of the fiber content and length. We calculate the Young's modulus, fracture stress, and the strain at maximum stress as a function of the fiber volume fraction and aspect ratio. The results are compared with the predictions of other theoretical studies and experiments.


Sign in / Sign up

Export Citation Format

Share Document