Karakteristik Marshall pada Campuran Aspal Dingin dengan Asbuton Akibat Dari Penggunaan Aditif Wetfix-BE

2020 ◽  
Vol 6 (1) ◽  
pp. 50
Author(s):  
I Gede Mardawa ◽  
Ervina Ahyudanari ◽  
Suryawan Murtiadi

West Nusa Tenggara Province consists of two main islands namely Lombok and Sumbawa. Regency Roads on Lombok Island, especially rural roads, has been severely damaged due to lack of routine maintenance. The types of damage that occur are cracks, small holes, and even large pools that endanger road users. This study aims to obtain a mixture of new materials in order to obtain an easy and fast repair method without reducing the quality during its intended life. In the meantime, repairing with CAD (cold asphalt mixture) requires curing time of 3x24 hours to achieve standard material quality with Marshall Characteristics according to the 2010 Bina Marga Specifications. This study combines CAD using BP (rejuvenating agent) and Wetfix-BE additive to get optimal results without curing process. The BP used is asphalt mixture, kerosene, and bunker oil stirred in a mixing machine into one unit. The results showed the optimum concentration of this mixture was 0.3% wet-be additive, 4.50% BP in CAD with asbuton proportion of 25%. In the fatigue test with a cyclic loading of 100 kPa, the pavement mixture is able to resist a fully loaded truck of 7731 times. In conclusion, this mixture combination is able to speed up the asphalt binding time by making briquettes according to the 2018 Highways Specifications without going through the long curing process.

2013 ◽  
Vol 639-640 ◽  
pp. 346-349
Author(s):  
Zhao Bin Xie

In order to verify the characterization degree of water stability, research selects some clay content aggregate retrieved from road engineering field to produce rubber asphalt mixture and carry out the water stability test. Test results show that clay content in aggregate has a significant influence on the water stability of rubber asphalt mixture. When the content of clay in aggregate less than 1%, the influence on water stability is smaller; when the clay content exceeds 2%, the decay rate on water stability performance and long term properties obviously speed up, resulted in serious water damage.


2012 ◽  
Vol 490-495 ◽  
pp. 3753-3761
Author(s):  
Jun Yong Liu ◽  
Liu Jun Zhang ◽  
Bo Kou ◽  
Peng Shen

The rubber- fly ash modified asphalt mixture formula was made by comprehensive laboratory test. The mixture graduation was determined with improved Superpave design method. The new material had good performance through laboratory test. The overlay of old concrete pavement was analyzed by establishing finite element model. The layer-layers could set stress absorbing layers or not; Stress absorbing layer had a absorption effect on stress in cracks and inhibiting effect on crack expanding. The results show that: the stress-absorbing layer of new materials can significantly reduce the stress concentration in cracks, effectively prevent the development of reflection crack and has excellent crack resistance. Meanwhile the adaptability of new materials used as stress absorbed layer is verified


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xu Cai ◽  
Duanyi Wang ◽  
Wenke Huang ◽  
Jiangmiao Yu ◽  
Cheng Wan

Rutting is common pavement distress, which leads to lower riding comfort for road users and high maintenance costs. One of the commonly used tests is the simulation test with wheel tracking devices. Here, a new rutting test system has been developed based on the “Driving Wheel Pavement Analyzer” (DWPA) to evaluate the rutting performance of asphalt mixtures. This study conducted three types of rutting tests to validate feasibility, reliability, and accuracy of DWPA test. The results indicated that the DWPA test provided more information on ruts and enabled us to distinguish the performance of materials. The CDWPA index is better suited to reflect the rutting resistance of the material, which is highly correlated to the APA rutting index and the rutting test index of China according to the grey relational analysis results.


2020 ◽  
Vol 16 (32) ◽  
pp. 55-82
Author(s):  
Allex E Álvarez-Lugo ◽  
Evelyn Ovalles ◽  
Oscar Reyes-Ortiz

The paving-heavy crude oils (PHCO) are natural cut-back asphalts composed by a high content of asphalt cement and a portion of solvents. These materials have been used in Colombia since the 90’s to improve low volume traffic roads. The existence of solvents in the PHCO allows mixing it with the aggregates in cold conditions. Then, before compaction, these asphalt mixtures require a curing process (i.e., process of partial loss of solvents from the PHCO) to ensure its proper performance. However, at present there is no consensus on the loss of solvents to specify for the curing process of mixtures fabricated with PHCO. Given this situation, this study assesses the effect of the partial content of solvents on both the mechanical response and compactability of asphalt mixtures produced using PHCO from the Castilla’s oil field (CA); a material extensively used in the East region of Colombia. The study included conducting and analyzing conventional characterization tests of the mixture constituent materials, surface free energy testing on both mastics and the aggregate, mix design, and characterization of both mechanical response and compactability of the mixtures fabricated using the CA and a control asphalt. Corresponding results led to identify and quantify a progressive improvement in both the adhesion quality of the mastic-aggregate interfaces and the mechanical response of the asphalt mixture as a function of the reduction of the solvents. These results suggest the convenience of compacting the asphalt mixtures fabricated using the CA after allowing a loss of 50% of the solvents obtained from the CA via atmospheric distillation at 360°C.


CONSTRUCTION ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 1-11
Author(s):  
Ng Cui Ming ◽  
Ramadhansyah Putra Jaya ◽  
Haryati Awang

Hot Mix Asphalt (HMA) is the most commonly used in Malaysia for highways, interstates and roads due to its flexibility, economical, strong and provide safe riding quality for road users. Over the years, the increase of damage on pavement roads in Malaysia has become a severe issue although the road did not achieve its design life. Hence, to reduce damage and defect, an improvised road pavement structures is needed. Various studies have been conducted to identify the new materials that can be used as a replacement in hot mix asphalt. In this research, the purpose is to evaluate the performance of eggshell as coarse aggregate replacement in hot mix asphalt. The gradation for aggregate used in this mixture is AC14. The weight for total mixing of the aggregates used is 1200g while the grade for bitumen is 60/70. The samples were mixed with eggshell in the various percentages of 0%, 5%, 10%, 15% and 20% by total weight of aggregate size 5mm. The laboratory tests carried out to determine the properties of aggregates included, aggregate impact value and aggregate crushing value. Besides, penetration and softening point were also performed to determine the properties of bitumen. Several types of test were conducted towards the samples, which are Marshall Test, Indirect Tensile Strength and Cantabro Test. The results exhibit that the conventional asphalt mixture is more effective than modified asphalt mixture. The replacement of eggshell as coarse aggregate was not enough improvement to the performance of asphalt pavement as the performance of conventional mixture is more stable than modified mixture.


2021 ◽  
Vol 328 ◽  
pp. 10002
Author(s):  
Fajar Romadhon ◽  
Agata Iwan Candra ◽  
Dwifi Aprillia Karisma ◽  
Muhammad Heri Nastotok ◽  
Rendy Kurnia Dewanta ◽  
...  

Stability is a measure of the strength of an asphalt mixture in resisting deformation due to loading. If a road construction structure cannot withstand the existing load, it will result in road damage that endangers road users. This study aims to improve the stability of the asphalt concrete mixture with the use of crumb rubber. Crumb rubber is used because it has good resistance and elasticity. The research was conducted experimentally by making test objects in the laboratory. In this study, five variations crumb rubber (2%, 4%, 6%, 8%, and 10% of the weight asphalt mixture) were carried out with the size of the powder retained on a 40 sieve. Marshall test and analysis of volumetric was carried out to determine the characteristics of the asphalt-concrete mixture. The results showed that the highest Marshall stability was obtained at 10% crumb rubber with a stability value of 1422 kg. The use of rubber powder can significantly increase the strength and quality of the asphalt-concrete mixture. Thus, crumb rubber can be used, and this percentage can be used as a reference in the manufacture of asphalt-concrete mixtures in order to obtain good road pavement quality.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Author(s):  
Brian Cross

A relatively new entry, in the field of microscopy, is the Scanning X-Ray Fluorescence Microscope (SXRFM). Using this type of instrument (e.g. Kevex Omicron X-ray Microprobe), one can obtain multiple elemental x-ray images, from the analysis of materials which show heterogeneity. The SXRFM obtains images by collimating an x-ray beam (e.g. 100 μm diameter), and then scanning the sample with a high-speed x-y stage. To speed up the image acquisition, data is acquired "on-the-fly" by slew-scanning the stage along the x-axis, like a TV or SEM scan. To reduce the overhead from "fly-back," the images can be acquired by bi-directional scanning of the x-axis. This results in very little overhead with the re-positioning of the sample stage. The image acquisition rate is dominated by the x-ray acquisition rate. Therefore, the total x-ray image acquisition rate, using the SXRFM, is very comparable to an SEM. Although the x-ray spatial resolution of the SXRFM is worse than an SEM (say 100 vs. 2 μm), there are several other advantages.


Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


Sign in / Sign up

Export Citation Format

Share Document