scholarly journals Measurement Method of Thermal Conductivity in Ununiformed Temperature Field

Netsu Bussei ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 166-173 ◽  
Author(s):  
Takahiro Ohmura ◽  
Tseng-Wen Lian ◽  
Akira Kondo ◽  
Ryo Hayasaka ◽  
Makio Naito
Netsu Bussei ◽  
2020 ◽  
Vol 34 (4) ◽  
pp. 137-146
Author(s):  
Takahiro Ohmura ◽  
Kento Ishii ◽  
Taichi Tasaka ◽  
Akira Kondo ◽  
Makio Naito

2020 ◽  
pp. 35-42
Author(s):  
Yuri P. Zarichnyak ◽  
Vyacheslav P. Khodunkov

The analysis of a new class of measuring instrument for heat quantities based on the use of multi-valued measures of heat conductivity of solids. For example, measuring thermal conductivity of solids shown the fallacy of the proposed approach and the illegality of the use of the principle of ambiguity to intensive thermal quantities. As a proof of the error of the approach, the relations for the thermal conductivities of the component elements of a heat pump that implements a multi-valued measure of thermal conductivity are given, and the limiting cases are considered. In two ways, it is established that the thermal conductivity of the specified measure does not depend on the value of the supplied heat flow. It is shown that the declared accuracy of the thermal conductivity measurement method does not correspond to the actual achievable accuracy values and the standard for the unit of surface heat flux density GET 172-2016. The estimation of the currently achievable accuracy of measuring the thermal conductivity of solids is given. The directions of further research and possible solutions to the problem are given.


Author(s):  
Milivoje M. Kostic ◽  
Casey J. Walleck

A steady-state, parallel-plate thermal conductivity (PPTC) apparatus has been developed and used for comparative measurements of complex POLY-nanofluids, in order to compare results with the corresponding measurements using the transient, hotwire thermal conductivity (HWTC) apparatus. The related measurements in the literature, mostly with HWTC method, have been inconsistent and with measured thermal conductivities far beyond prediction using the well-known mixture theory. The objective was to check out if existing and well-established HWTC method might have some unknown issues while measuring TC of complex nano-mixture suspensions, like electro-magnetic phenomena, undetectable hot-wire vibrations, and others. These initial and limited measurements have shown considerable difference between the two methods, where the TC enhancements measured with PPTC apparatus were about three times smaller than with HWTC apparatus, the former data being much closer to the mixture theory prediction. However, the influence of measurement method is not conclusive since it has been observed that the complex nano-mixture suspensions were very unstable during the lengthy steady-state measurements as compared to rather quick transient HWTC method. The nanofluid suspension instability might be the main reason for very inconsistent results in the literature. It is necessary to expend investigation with more stable nano-mixture suspensions.


2007 ◽  
Vol 353-358 ◽  
pp. 2003-2006 ◽  
Author(s):  
Wei Tan ◽  
Chang Qing Sun ◽  
Chun Fang Xue ◽  
Yao Dai

Method of Lines (MOLs) is introduced to solve 2-Dimension steady temperature field of functionally graded materials (FGMs). The main idea of the method is to semi–discretized the governing equation of thermal transfer problem into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method. The temperature field of FGM can be obtained by solving the ODEs with functions of thermal properties. As numerical examples, six kinds of material thermal conductivity functions, i.e. three kinds of polynomial functions, an exponent function, a logarithmic function, and a sine function are selected to simulate spatial thermal conductivity profile in FGMs respectively. The steady-state temperature fields of 2-D thermal transfer problem are analyzed by the MOLs. Numerical results show that different material thermal conductivity function has obvious different effect on the temperature field.


Author(s):  
T. Hayat ◽  
Taseer Muhammad ◽  
Saleh Al-Mezal ◽  
S.J. Liao

Purpose The objectives of present communication are threefolds. First is to model and analyze the two-dimensional Darcy-Forchheimer flow of Maxwell fluid induced by a stretching surface. Temperature-dependent thermal conductivity is taken into account. Second is to examine the heat transfer process through non-classical flux by Cattaneo-Christov theory. Third is to derive convergent homotopic solutions for velocity and temperature distributions. The paper aims to discuss these issues. Design/methodology/approach The resulting non-linear system is solved through the homotopy analysis method. Findings An increment in Deborah number β causes a reduction in velocity field f′(η) while opposite behavior is observed for temperature field θ(η). Velocity field f′(η) and thickness of momentum boundary layer are decreased when the authors enhance the values of porosity parameter λ while opposite behavior is noticed for temperature profile θ(η). Temperature field θ(η) is inversely proportional to the thermal relaxation parameter γ. The numerical values of temperature gradient at the sheet − θ′(0) are higher for larger values of thermal relaxation parameter γ. Originality/value To the best of author’s knowledge, no such consideration has been given in the literature yet.


2016 ◽  
Vol 53 (8) ◽  
pp. 081401
Author(s):  
耿鹰鸽 Geng Yingge ◽  
李隆 Li Long ◽  
潘晓瑞 Pan Xiaorui ◽  
傅依柳 Fu Yiliu

Geophysics ◽  
1988 ◽  
Vol 53 (5) ◽  
pp. 707-720 ◽  
Author(s):  
Dave Deming ◽  
David S. Chapman

The present day temperature field in a sedimentary basin is a constraint on the maturation of hydro‐carbons; this temperature field may be estimated by inverting corrected bottom‐hole temperature (BHT) data. Thirty‐two BHTs from the Pineview oil field are corrected for drilling disturbances by a Horner plot and inverted for the geothermal gradient in nine formations. Both least‐squares [Formula: see text] norm and uniform [Formula: see text] norm inversions are used; the [Formula: see text] norm is found to be more robust for the Pineview data. The inversion removes random error from the corrected BHT data by partitioning scatter between noise associated with the BHT measurement and correction processes and local variations in the geothermal gradient. Three‐hundred thermal‐conductivity and density measurements on drill cuttings are used, together with formation density logs, to estimate the in situ thermal conductivity of six of the nine formations. The thermal‐conductivity estimates are used in a finite‐element model to evaluate 2-D conductive heat refraction and, for a series of inversions of synthetic data, to assess the influence of systematic and random noise on the inversion results. A temperature‐anomaly map illustrates that a temperature field calculated by a forward application of the inversion results has less error than any single corrected BHT. Mean background heat flow at Pineview is found to be [Formula: see text] (±13 percent), but is locally higher [Formula: see text] due to heat refraction. The BHT inversion (1) is limited by systematic noise or model error, (2) achieves excellent resolution of a temperature field although resolution of individual formation gradients may be poor, and (3) generally cannot detect lateral variations in heat flow unless thermal‐conductivity structure is constrained.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
M. Elwassif ◽  
A. Datta ◽  
M. Bikson

There is a growing interest in the use of Deep Brain Stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or magnetic coupling (e.g., MRI) remain poorly understood, and methods to mitigate temperature increases are actively investigated. Indeed, brain function is especially sensitive to the changes in temperature including neuronal activity, metabolic functions, blood-brain barrier integrity, molecular stability, and viability. We developed technology to control tissue heating near DBS leads by modifying the thermal properties of lead materials. A micro-thermocouple was used to measure the temperature near DBS electrodes immersed in a saline bath. 3387 and 3389 Leads were energized using Medtronic DBS stimulators. The RMS of the driving voltage was monitored. Peak steady-state temperature was determined under different RMS values. A micro-positioning system was used, which allowed the generation of temperature field map. We developed and solved a finite element method (FEM) bio-heat transfer model of DBS incorporating realistic DBS lead architecture. The model was first validated using the experimental results (by matching saline thermal conductivity and electrical conductivity) and was then applied to develop methods to control temperature rises in the brain using heat-sink technology. Experimental measurements are consistent with theoretical predictions including: 1) Peak temperature increases directly with the RMS square of the applied voltage, such that different waveforms with the same RMS induce the same peak temperature rise; 2) Peak temperatures increases with contact proximity such the maximal temperature rise was observed using adjacent contacts of lead 3389; 3) Temperature decayed over ∼2 mm distance away from energized contacts. FEM results demonstrated the central role of lead materials (material properties and geometry) in controlling temperature rise by conducting heat: namely by acting as passive heat sinks. We report that the relatively high thermal conductivity of exiting DBS lead wiring affects the temperature field, indicating the importance of detailed lead architecture. We then demonstrate how modifying lead design to optimize heat conduction can effectively control temperature increases; the manifest advantages of this approach over complimentary heat-mitigation technologies is that heat-sink controls include: 1) insensitive to the mechanisms of heating (e.g., nature of magnetic coupling); 2) does not interfere with device efficacy (e.g., the electric fields induced in the tissue during stimulation are unaffected); and 3) can be practically implemented in a broad range of implanted devices (cardiac/neuro-prothethics, pumps...) without modifying device operation or implant procedure.


Author(s):  
Qingyang Yu ◽  
Chao Zhang ◽  
Zhenxue Dai ◽  
Chao Du ◽  
Mohamad Reza Soltanian ◽  
...  

Temperature is an important factor in designing and maintaining tunnels, especially in cold regions. We present three-dimensional numerical simulations of tunnel temperature fields at different temperature conditions. We study the tunnel temperature field in two different conditions with relatively low and high ambient temperatures representing winter and summer of northeast China. We specifically study how these temperature conditions affect tunnel temperature and its migration to surrounding rocks. We show how placing an insulation layer could affect the temperature distribution within and around tunnels. Our results show that the temperature field without using an insulation layer is closer to the air temperature in the tunnel, and that the insulation layer has shielding effects and could plays an important role in preventing temperature migration to surrounding rocks. We further analyzed how thermal conductivity and thickness of insulation layer control the temperature distribution. The thermal conductivity and thickness of insulation layer only affect the temperature of the surrounding rocks which are located at distances below ~20 m from the lining.


Sign in / Sign up

Export Citation Format

Share Document