scholarly journals Numerical simulation on punching shear performance of RC flat slab-square steel column prefabricated connections

Author(s):  
Xiaofei Ma ◽  
Ailin Zhang
Author(s):  
Shinya Nakaue ◽  
Yasushi Nishimura

To improve the bearing failure behavior of the exterior steel beam-reinforced concrete column joints composed of reinforced concrete columns, joint details using steel column was proposed. Steel column was attached to the lower flanges at right angles to the steel flange. The objective of this study is to clarify the effectiveness of proposed joint details experimentally and theoretically. To clarify the influence of steel column on the bearing failure of the joint, seven T-shaped subassemblages were tested under reversed cyclic loading. All specimens had the same cross sections of the steel beam. The experimental variables were the embedded length of the steel column, whether there is the end plate at the tip of the embedded steel column, and, the arrangement of transverse reinforcement ratio surrounding the steel column. The following remarks can be drawn from the test results. 1) In case of the specimen with a short embedded length of the steel column, the punching shear failure on the upper surface of the steel beam flange was remarkable when the maximum strength was reached. However, in the specimen with long embedded length of steel column, it was not observed the punching shear failure. 2) The maximum strength increased with the embedded length of the steel column. Further, the maximum strength of the specimen with the embedded length of three times of the steel column depths is subjected to bending yield strength of the steel column. 3) It was shown that the transverse reinforcement to surround the steel column and the end plate were necessary to improve the bearing failure of the joint. 


2013 ◽  
Vol 438-439 ◽  
pp. 1427-1432
Author(s):  
Qian Xu Liao ◽  
Jin Cao ◽  
Jun Wei Tang

This paper derives a numerical simulation of direct shearing test and model pile test based on the measured data of bored piles. Characteristics of the interface between bored pile and soil around it are analyzed. Laws of the magnitude and the distribution range of point resistance and frictional resistance of the bored piles in granular and clayey soil are obtained and the mechanism on them is explained.


2012 ◽  
Vol 36 ◽  
pp. 239-257 ◽  
Author(s):  
M.A. Eder ◽  
R.L. Vollum ◽  
A.Y. Elghazouli

2019 ◽  
Vol 54 (5) ◽  
Author(s):  
Haider K. Ammash ◽  
Safa S. Kadhim

In the present study, the effect of using reinforced concrete column capital on the punching shear strength of flat slab was investigated. The study was divided into two lines, the first line was the experimental study involves the molding four reinforced concrete flat slab models with dimensions (1600×1600×100 mm) with three different dimensions of column capital (400×400 mm, 600×600 mm, and 800×800 mm) in addition to reference model without columns capital (column dimension 200×200 mm). The second line that numerical modeling through the ABAQUS finite element program was introduced. Effect of column’s capital size and shape of column’s capital (rectangular and circular) were studied experimentally and numerically. A good agreement was obtained between the experimental and theoretical study. The main conclusion that the punching shear strength of reinforced concrete flat slab was affected on the size and shape of a column capital.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Muhammad Zardi

The aim of the tests was to investigate the influence of concrete strength, the eccentricity of the column and the use of shear reinforcement in flat slabs on punching shear. The research specimens are 8 units of flat slabs. Flat slab size 1400 x 1400 mm2 with thickness of 120 mm. Flat slabs were connected with circular column with dimension 225 mm  of diameter and 200 mm of height. Flat slabs were made in to 2 variations of concrete strength, e.i. 30 MPa and 60 MPa, 2 variations of shear reinforcement, e.i. without shear reinforcement and with shear reinforcement and 2 variations of eccentricity that, e.i. without eccentricity and with eccentricity. Each treatment has 1 specimen. Each specimen has 6 cylinder specimens. Cylinder specimens used as a concrete strength control for main specimen (flat slab). The tests showed that the concrete strength had a strong influence on punching shear strength. This is shown by capacity increase of 42.78%; 54.00%; 46.59% and 0.02%. The value is ratio between the maximum load of the specimens with 60 MPa and 30 MPa at the same eccentricity and the same shear reinforcement. The eccentricity of column reduce the capacity of punching shear. This is shown by 3 specimens decrease in capacity of 3.70%; 36.75% and 7.30%. Only 1 specimen that increase in capacity of 9.27%. The value is ratio between the maximum load of the specimens with 40 mm eccentricity and 0 mm eccentricity at the same compressive strenght and the same shear reinforcement. The use of shear reinforcement does not always increase the punching shear capacity. There are 2 observations that increased capacity (52.07% and 65.37% at the centric load) and 2 observations decreased capacity (0.12% and 4.92% at the eccentric load). The value is ratio between the maximum load on the specimens using shear reinforcement with the specimens that do not use shear reinforcement at the same compressive strenght and the same eccentricity.The use of shear reinforcement increase punching shear capacity of flat slab at the centric load condition. The use of shear reinforcement decrease punching shear capacity of flat slab at the eccentric load condition.


2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Simona Šarvaicová ◽  
Viktor Borzovič

The paper deals with the loading test results of an experimental reinforced concrete flat slab fragment, which was supported by an elongated rectangular column. The slab specimens were 200 mm thick and were designed without any shear reinforcement. By experimentally obtained punching shear resistance, the accuracy of the standard design models for prediction punching resistance was compared. The results of the experiments were also compared with the results of a numerical non-linear analysis performed in the Atena program.


This article provides performance of two way slabs under punching shear. The two way slabs are cast with dimensions of 600x600x75mm and to cast the slabs geopolymer concrete along with micro (13mm length (small fiber)) and macro steel fibers (50mm length (big fibers)) were used. Total four mixes were taken to the present study and for each mix three slabs were cast. The first mix without fibers, second mix with small fiber, the third mix with big fiber and fourth mix with small and big fibers are taken to the present study. All the slabs were tested under single point concentrated load and load is placed at the center of the slab. From the experimental investigation it is obvious that, the slab with combination of small and big fibers showed superior performance among all and it showed 157.1% higher strength carrying capacity than the slab without fibers.


Sign in / Sign up

Export Citation Format

Share Document