scholarly journals Canvitation deterioration of diesel power plant cylinder liner

2020 ◽  
Vol 4 (3) ◽  
pp. 239-246
Author(s):  
Sunday Bako ◽  
Abdulkarim Nasir ◽  
Bori Ige ◽  
Nicholas Musa

The generating station in which diesel engine is used as a prime mover for generating electrical energy is known as diesel power plant. The cylinders liner are cylindrical component that are fixed inside the engine block. The function of the cylinder liners is to retain the working fluid and to guide the piston. Most diesel power plant uses wet-cylinder liners that are exposed to intensive cavitation. The paper aimed at studying the behavior of the cylinder liners that can lead to cavitation. The analysis involves, modeling and simulation in using Solidworks Software. The analysis shows that the cylinders are subjected to harmonic vibration resulting to momentary separation of the coolant from the cylinder wall, creating a pressure difference around the coolant surface which forms air bubbles. These bubbles explode at an extreme velocity. The explosion of these bubbles release surface energy known as cavitation. The energy hammers the cylinder liner surface thereby removing minute particles of metal from the surface of the vibrating cylinder leading to cavitational deterioration. The paper hereby calls on automotive designers to take critical measures in designing of; cylinder liner, water jacket and the entire cooling system, in order to control this phenomenon.

JTAM ROTARY ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 65
Author(s):  
Andhika Bayu Oktavianto ◽  
Mastiadi Tamjidillah

Salah satu pembangkit listrik di Indonesia adalah pembangkit listrik Asam Asam yang terletak di dekat mulut tambang batubara. Setiap pembangkit listrik membutuhkan sejumlah besar air sebagai fluida kerja atau sebagai air pendingin. Pembangkit Listrik Tenaga Uap Asam Asam Batubara menggunakan air sungai sebagai air pendingin dengan mesin pendingin sebagai mesinnya. Pada bulan September 2017, menara pendingin unit 2B dari PLTU Asam Asam Batubara mengalami kegagalan operasi karena spacer rusak dan membuat PLTU Asam Asam Batubara mengalami penurunan dan kerugian lainnya. Tim teknik mendiagnosis kasus tersebut karena ketidakselarasan. Berdasarkan uraian akar penyebab masalah, ada tiga masalah utama yang mungkin terjadi yaitu: misalignment, unbalance, dan rotasi gearbox berat. Misalignment adalah pemicu utama untuk serangkaian masalah yang menyebabkan kegagalan operasi menara pendingin. Maka perlu mempelajari masalah utama yang menyebabkan kegagalan operasi menara pendingin untuk ditindaklanjuti dengan pemeliharaan preventif sesuai dengan kondisi saat ini untuk mencegah kegagalan yang serupa di unit 2B dan unit serupa lainnya. One of the power plants in Indonesia is the Asam Asam power plant located near the mouth of the coal mine. Each power plant requires large amounts of water as a working fluid or as a cooling water. Asam Asam Coal Fired Steam Power Plant uses river water as a cooling water with the cooling towers as its engine. In September 2017, the cooling tower unit 2B of Asam Asam Coal Fired Steam Power Plant experienced an operation failure because of the spacer was broken and made the Asam Asam Coal Fired Steam Power Plant to experience derating and other losses. The engineering team diagnoses the case due to misalignment. Based on the description of the root causes of the problem, there are three main problems that might occur namely : misalignment, unbalance, and heavy gearbox rotation. Misalignment is the main trigger for a series of problems causing failure of cooling tower operations. Then it is necessary to study the main problems causing the failure of the cooling tower operation to be followed up with preventive maintenance in accordance with the current conditions to prevent similar failures in unit 2B and other similar units.


2017 ◽  
Vol 21 (2) ◽  
pp. 1153-1160 ◽  
Author(s):  
Aleksandra Borsukiewicz

The paper presents the idea of using organic substances as working fluids in vapor power plants, in order to convert the low and medium temperature thermal energy sources into electrical energy. The calculation results of the power plant efficiency for butane-ethane zeotropic mixtures of different mass compositions, for the power plant supplied with hot water having a temperature of 120?C. Based on the results of thermal-flow calculations it was found that the use of zeotropic mixture does not allow to increase the efficiency and output of the power plant (these values appeared as slightly lower ones). However, it was found that, through the selection of a mixture of sufficiently large temperature glide, the heat exchange surface of the condenser can be reduced or a co-generation system can be implemented.


Author(s):  
N Biboulet ◽  
H Bouassida ◽  
J Cavoret ◽  
AA Lubrecht

This paper is part of a project aiming at optimizing the cylinder-liner/piston-ring contact performance: oil consumption, friction and wear. The surface micro-geometry has a major influence on these characteristics. Classical cylinder-liners display cross-hatched patterns. Grooves modify contact pressure distributions and act as lubricant reservoirs and pipes redistributing oil. The load-carrying capacity is greatly influenced by the number of grooves and their geometry. An automatic groove geometry identification (depth, width, angle) is performed on cylinder-liner surface measurements. The surfaces were measured at two instants: new and after a fired engine test. The micro-geometry evolution is discussed.


Author(s):  
C. Anderberg ◽  
S. Johansson ◽  
P. H. Nilsson ◽  
R. Ohlsson ◽  
B. G. Rose´n

Demands for decreased environmental impact from vehicles are resulting in a strong push for decreased engine oil, fuel consumption and weight. New machining and coating technologies have offered ways to attack these problems. Engine oil and fuel consumption are to a great extent controlled by the topography of the cylinder liner surface and it is therefore important to optimise this surface. Recent engine tests have shown a reduction in oil consumption when using cylinder liners with a smoother finish than that given by the current plateau honing. However, engine manufacturers are hesitant to introduce smoother liner surfaces because of fears of severe wear and scuffing. There is also the possibility that smoother liner surfaces may be more sensitive to the choice of piston ring finishes. This paper therefore seeks to investigate the functional performance and resistance to wear of these smooth cylinder liners and the mating top ring surfaces.


2021 ◽  
Vol 313 ◽  
pp. 12002
Author(s):  
Aigiz Valiullin ◽  
Vladimir Zenkin

Modern space programs cover a wide range of missions, including both near-earth missions and those affecting areas of deep space. In the second case, power plants based on the conversion of thermal energy into electrical energy are often considered for the power supply of spacecraft. One of the possible thermoelectric converters is the Stirling engine. To be able to design modern power plants of spacecraft built based on Stirling engines, it is necessary to use calculation tools to simulate their operation in a wide range of modes, to take into consideration the influence of subsystems on each other and the final characteristics of the power plant. As part of the work, a thermodynamic model of an external thermal circuit was created, consisting of heat pipes, heat exchangers and radiator cooler panels. The hot thermal circuit is consisted of two parts: primary and secondary, the cold thermal circuit is consisted of only one part. A mathematical model of the free-piston Stirling engine of the first order has been also implemented. The working fluid in the engine is helium. The developed models were independently debugged and then integrated into a single model of the power plant. For each type of model, the corresponding mathematical models are presented and the basic assumptions are described. The model is implemented in an open simulation environment of xcos/scilab, examples of power plant model implementation are presented. Numerical experiments were carried out to study the dynamics of the heating of the contour elements (with independent, and then with integrated modeling) and the effect of the non-stationary thermal state on the engine performance. The article presents the basic equations and the design schemes for the power plant model, as well as some results of numerical simulation, including the dynamics of hot and cold circuit temperature changes and the dynamics of changes in the indicator diagram of the engine when the external thermal circuit is heated. The developed model can be used in the early stages of spacecraft design for a preliminary assessment of the main indicators of the power plant, its dimensions and thermal loads.


Author(s):  
S. A. Wright ◽  
A. Z’Graggen ◽  
J. Hemrle

Transcritical CO2 power systems are being investigated for site independent electro-thermal energy storage (ETES). The storage plant uses electrical energy with a standard vapor-compression heat pump/refrigeration cycle to store thermal energy as hot water and ice over a period of approximately 8 hours during low power demand. The power cycle is then reversed and operated as a simple Rankine cycle to produce ∼100 MWe for about 4.5 hours during peak demand. During the power generation cycle the storage plant uses the heat stored in the hot water tanks, together with ice melting, plus ambient heat rejection for the heat sink. For 100 MWe class power plants, the round trip efficiency is estimated to be up to 60%. CO2 was selected as the working fluid because it improves the ability of the plant to operate with high reversibility. In addition, it is compact and can operate below the freezing point of water. This report describes the major control characteristics of the plant, together with methods, tools, and results of the model. Because the plant is nearly “closed”, it must operate only by consuming electrical energy during the charging cycle and by producing electrical energy plus some waste heat during the discharge cycle. All other heat transfer processes occurs solely within the storage plant itself and consists of either heating or cooling water and by making or melting ice. For the plant to operate continuously, both the water thermal storage and ice storage must be returned to their initial conditions after every 24 hour period. Otherwise, small changes in the thermal environment during waste heat rejection or performance variations of internal components will cause the storage system to drift from its designed operating temperature, pressure and energy storage capability, challenging its ability to operate. The control concept for the storage plant addresses both the operation of the plant during charging and discharging. It also addresses strategies for control during off-design situations or due to disturbances such as load following or changes in ambient heat rejection conditions. The process simulations described in the paper include models for the main physical components of the plant including the turbomachinery, the heat exchanger network, states of charge of the cold and hot storage, and CO2 inventory.


2019 ◽  
Vol 7 (2B) ◽  
Author(s):  
Vanderley Vasconcelos ◽  
Wellington Antonio Soares ◽  
Raissa Oliveira Marques ◽  
Silvério Ferreira Silva Jr ◽  
Amanda Laureano Raso

Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. This inspection is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI is reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components, such as FMEA (Failure Modes and Effects Analysis) and THERP (Technique for Human Error Rate Prediction). An example by using qualitative and quantitative assessesments with these two techniques to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues, is presented.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3298
Author(s):  
Gianpiero Colangelo ◽  
Brenda Raho ◽  
Marco Milanese ◽  
Arturo de Risi

Nanofluids have great potential to improve the heat transfer properties of liquids, as demonstrated by recent studies. This paper presents a novel idea of utilizing nanofluid. It analyzes the performance of a HVAC (Heating Ventilation Air Conditioning) system using a high-performance heat transfer fluid (water-glycol nanofluid with nanoparticles of Al2O3), in the university campus of Lecce, Italy. The work describes the dynamic model of the building and its heating and cooling system, realized through the simulation software TRNSYS 17. The use of heat transfer fluid inseminated by nanoparticles in a real HVAC system is an innovative application that is difficult to find in the scientific literature so far. This work focuses on comparing the efficiency of the system working with a traditional water-glycol mixture with the same system that uses Al2O3-nanofluid. The results obtained by means of the dynamic simulations have confirmed what theoretically assumed, indicating the working conditions of the HVAC system that lead to lower operating costs and higher COP and EER, guaranteeing the optimal conditions of thermo-hygrometric comfort inside the building. Finally, the results showed that the use of a nanofluid based on water-glycol mixture and alumina increases the efficiency about 10% and at the same time reduces the electrical energy consumption of the HVAC system.


Sign in / Sign up

Export Citation Format

Share Document