scholarly journals Cyanogenesis prospection in galled and non-galled tissues of Microgramma squamulosa (Polypodiaceae)

Lilloa ◽  
2020 ◽  
pp. 156-163
Author(s):  
Mariana Fernandes da Rocha ◽  
Isabella Rodrigues Lancellotti ◽  
Marcelo Guerra Santos

Cyanogenic glycosides are defense substances that can produce hydrocyanic acid when they undergo hydrolysis as a result of herbivory, a process called cyanogenesis. Galls are neoformed structures of plant tissues induced by species-specific interactions between an inducer organism and a host plant. Earlier studies in Microgramma species have demonstrated that has a variation in cyanogenesis within and between populations, as well as in different plant organs. Microgramma squamulosa is an epiphytic fern that may contain stem galls induced by Tortrimosaica polypodivora (Lepidoptera: Tortricidae). Thus, the aim of the present study was to assess cyanogenesis seasonally and in different tissues (galled and non-galled) of M. squamulosa. The study was conducted in populations located in the Rio de Janeiro state, Brazil. Cyanogenesis was assessed using the Feigl-Anger paper test. A total of 260 galled and non-galled tissues were analyzed, 45 gall samples, 67 sterile leaves, 103 stems and 2 croziers. Cyanogenesis was detected in only three sterile leaf samples. In none of the samples were the stems or galls cyanogenic. The results corroborate the hypothesis that the stems of Microgramma squamulosa galled by Tortrimosaica polypodivora are not cyanogenic.

2017 ◽  
Vol 65 (4) ◽  
pp. 327 ◽  
Author(s):  
Saskia Grootemaat ◽  
Ian J. Wright ◽  
Peter M. van Bodegom ◽  
Johannes H. C. Cornelissen ◽  
Veronica Shaw

Bark shedding is a remarkable feature of Australian trees, yet relatively little is known about interspecific differences in bark decomposability and flammability, or what chemical or physical traits drive variation in these properties. We measured the decomposition rate and flammability (ignitibility, sustainability and combustibility) of bark from 10 common forest tree species, and quantified correlations with potentially important traits. We compared our findings to those for leaf litter, asking whether the same traits drive flammability and decomposition in different tissues, and whether process rates are correlated across tissue types. Considerable variation in bark decomposability and flammability was found both within and across species. Bark decomposed more slowly than leaves, but in both tissues lignin concentration was a key driver. Bark took longer to ignite than leaves, and had longer mass-specific flame durations. Variation in flammability parameters was driven by different traits in the different tissues. Decomposability and flammability were each unrelated, when comparing between the different tissue types. For example, species with fast-decomposing leaves did not necessarily have fast-decomposing bark. For the first time, we show how patterns of variation in decomposability and flammability of bark diverge across multiple species. By taking species-specific bark traits into consideration there is potential to make better estimates of wildfire risks and carbon loss dynamics. This can lead to better informed management decisions for Australian forests, and eucalypt plantations, worldwide.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qianqian Huang ◽  
Tianming Hu ◽  
Zhongjun Xu ◽  
Long Jin ◽  
Tim A. McAllister ◽  
...  

This study aimed to determine the concentration and composition of condensed tannins (CT) in different tissues of purple prairie clover (PPC; Dalea purpurea Vent.) at different maturities and to determine their protein-precipitating capacity. The compositions of CT were elucidated after thiolysis with benzyl mercaptan followed by high-performance liquid-chromatography (HPLC) and 1H–13C heteronuclear single quantum coherence (HSQC) NMR spectroscopy. The results indicated that PPC flowering heads contained the highest CT concentration. Purple prairie clover CT consisted mainly of epicatechin (EC) and epigallocatechin (EGC) subunits. CT in the leaves were composed of more EC and less EGC than CT in stems and flowering heads at both the early flowering (EF) and late flowering (LF) head stages. The mean degree of polymerization was the highest for CT in stems and increased with maturity. CT isolated from PPC leaves at the early flowering head stage exhibited the greatest biological activity in terms of protein precipitation. Overall, the CT in PPC were predominantly procyanidins and the concentration and composition varied among the plant tissues and with maturity.


2018 ◽  
Vol 56 (10) ◽  
Author(s):  
David M. Jacobs ◽  
Heather M. Ochs-Balcom ◽  
Jiwei Zhao ◽  
Timothy F. Murphy ◽  
Sanjay Sethi

ABSTRACT Little is known about interactions between nontypeable Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa in the lower respiratory tract in chronic obstructive pulmonary disease (COPD) patients. We characterized colonization by these four bacterial species, determined species-specific interactions, and estimated the effects of host factors on bacterial colonization among COPD patients. We conducted a prospective cohort study in veterans with COPD that involved monthly clinical assessment and sputum cultures with an average duration of follow-up of 4.5 years. Cultures were used for bacterial identification. We analyzed bacterial interactions using generalized linear mixed models after controlling for clinical and demographic variables. The outcomes of interest were the relationships between bacteria based on clinical status (stable or exacerbation). One hundred eighty-one participants completed a total of 8,843 clinic visits, 30.8% of which had at least one of the four bacteria isolated. H. influenzae was the most common bacterium isolated (14.4%), followed by P. aeruginosa (8.1%). In adjusted models, S. pneumoniae colonization was positively associated with H. influenzae colonization (odds ratio [OR], 2.79; 95% confidence interval [CI], 2.03 to 3.73). We identified negative associations between P. aeruginosa and H. influenzae (OR, 0.15; 95% CI, 0.10 to 0.22) and P. aeruginosa and M. catarrhalis (OR, 0.51; 95% CI, 0.35 to 0.75). Associations were similar during stable and exacerbation visits. Recent antimicrobial therapy was associated with a lower prevalence of S. pneumoniae, H. influenzae, and M. catarrhalis, but not P. aeruginosa. Our findings support the presence of specific interspecies interactions between common bacteria in the lower respiratory tracts of COPD patients. Further work is necessary to elucidate the mechanisms of these complex interactions that shift bacterial species.


2016 ◽  
Vol 67 (12) ◽  
pp. 1835 ◽  
Author(s):  
J. A. Lieschke ◽  
J. P. Lyon ◽  
P. D. Moloney ◽  
S. J. Nicol

Many freshwater fish worldwide have been shown to use Structural Woody Habitat (SWH) for a variety of reasons. The mid reaches of the Murray River, a large lowland river in south-eastern Australia, was surveyed by boat electrofishing, to investigate the use of SWH type (hollows, rootmass and solids), SWH distance to bank (near bank, intermediate to bank and mid-channel) and the interaction between SWH type and distance to bank. The study found that Murray cod catch per unit effort (CPUE) increased in near-bank areas when hollows were a component of the SWH. The CPUE of trout cod was higher when hollows were present. However, the interactions between distance to bank and hollow SWH were complex and dependent on presence or absence of rootmass. The species-specific interactions between SWH microhabitat and distance to bank found within this study has important relevance for stream managers. The common practice of realigning SWH favours Murray cod over trout cod, which could have negative consequences for the endangered trout cod. More broadly, managers may need to consider a balance of SWH type and where it is placed in the river for the species they are targeting when rehabilitating rivers via the introduction of SWH.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yinzi Yue ◽  
Lianlin Su ◽  
Min Hao ◽  
Wenting Li ◽  
Li Zeng ◽  
...  

Peroxidases are species-specific. Differences in peroxidase can objectively reflect the genetics among species. The use of peroxidase to assist in species identification is relatively simple and effective. In this work, we proposed a graphene-modified electrode. This electrode can amplify the signal of electrocatalytic reduction of hydrogen peroxide. Since peroxidase can catalyze the reduction of hydrogen peroxide, this signal can be used as an indicator to demonstrate the content of peroxidase in different plant tissues. Twelve herbal medicines were selected for our study. The results show that this electrochemical-based detection technique was comparable to colorimetric method in terms of accuracy.


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 404 ◽  
Author(s):  
Maria Marlin ◽  
Avery Wolf ◽  
Maryam Alomran ◽  
Lynn Carta ◽  
George Newcombe

Pleurotus species are said to be nematophagous because they paralyze and consume some bacterial-feeding nematodes. It has never been clear whether that means all nematodes. Here we tested thirteen bacterial-feeding nematode species: seven of family Rhabditidae, three of Cephalobidae (one with three populations), two of Panagrolaimidae, and one of Diplogastridae. Nematodes interacted on water agar with toxin-producing isolates of Pleurotus pulmonarius (Fr.) Quél. and Pleurotus ostreatus (Jacq.) P. Kumm. Of the thirteen species, nine were susceptible to P. pulmonarius (all individuals were paralyzed) but four (four populations of two cephalobid species, one rhabditid, and one panagrolaimid) survived exposure to P. pulmonarius. The resistant four species not only survived but multiplied their numbers by consuming P. pulmonarius. A similar trend was observed with nematodes interacting with P. ostreatus; however, six species were resistant to P. ostreatus. Interestingly, four of these six species were susceptible to P. pulmonarius, and interactions overall were differential. Pleurotus species are nematophagous toward some nematodes but are also consumed by others in three of the four families assayed. Species-specific interactions point to the need for studies of the host ranges of both “nematophagous” fungi and “fungivorous” nematodes, especially if they are to be used for biological control.


2003 ◽  
Vol 170 (7) ◽  
pp. 3608-3613 ◽  
Author(s):  
Yu Kato ◽  
Yoshimasa Tanaka ◽  
Hidenori Tanaka ◽  
Seiji Yamashita ◽  
Nagahiro Minato

2006 ◽  
Vol 87 (5) ◽  
pp. 1357-1367 ◽  
Author(s):  
Ming-Kuem Lin ◽  
Chung-Chi Hu ◽  
Na-Sheng Lin ◽  
Ban-Yang Chang ◽  
Yau-Heiu Hsu

The intra- and intercellular transport of potexviruses require interactions among viral RNA, coat protein and elements of the triple gene block proteins (TGBps). In this study, the requirement of bamboo mosaic virus (BaMV) TGBps for movement functions and the compatibilities with those of two potexviruses, Potato virus X (PVX) and Foxtail mosaic virus (FoMV), were examined using a satellite RNA-mediated trans-complementation assay system. Single or multiple TGBps of BaMV, PVX and FoMV were expressed from BaMV satellite RNA (satBaMV RNA) vectors to complement the functions of green fluorescent protein-tagged, movement-defective BaMV with mutation(s) in the matching gene(s). It was found that individual BaMV TGBps expressed from the satellite vector could function normally in trans, whereas bi-gene BaMV TGBp constructs in which the expression of TGBp3 might be impaired and individual TGBp genes from PVX or FoMV could not complement the movement functions of the defective helper viruses. Furthermore, alterations of the ratio among TGBps by ectopic expression of individual components of TGBps from satBaMV RNA vectors did not affect the cell-to-cell movement capabilities of wild-type BaMV significantly. The results indicate that species-specific interactions among movement proteins are obligatory for the cell-to-cell movement of BaMV and possibly other potexviruses.


Sign in / Sign up

Export Citation Format

Share Document