scholarly journals The Prediction of Air Quality Status

2019 ◽  
Vol 2 (1) ◽  
pp. p7
Author(s):  
Slamet Isworo ◽  
Poerna Sri Oetari ◽  
Indah Noor Alita ◽  
Tozan Ajie

Construction of the National Railway Station Cross Station Kedundang - New Yogyakarta Airport Station is an accelerated development program in supporting the economy of the special region of Yogyakarta. Construction of the railroad as a consequence of infrastructure development that enables potential impacts on the surrounding environment. This study is a predictive study of air quality that might occur after operational construction of a fire pathway with Nitrogen Dioxide (NO2) with the Gas Sampler-Spectrophotometer-Saltzman Method, Carbon Monoxide (CO) with the gas sampler-NDIR analyzer method and dust particles with the dust sample, Hi-Vol gravimetric method. The data obtained is then converted into modeling using Caline 4 software, so that air quality prediction is obtained at the time of operation. Air quality category predictions use the standard air pollution index standard. The results of the analysis of the air quality parameters show a good category, only on the CO2 parameters that address high concentrations. however, based on CO2 conversion using the value of the Air Pollution Standard Index is predicted to remain in the "Good" category at the time of project operation. Therefore an air quality study is needed in the railroad development plan through an analysis study of environmental impacts, so that the management and monitoring of air quality can be carried out properly so as to cause disruption to the environment.

Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Longjian Liu ◽  
Hui Liu ◽  
Xuan Yang ◽  
Feng Jia ◽  
Mingquan Wang

Introduction and Hypothesis: Stroke is a leading cause of death and the major cause of disability in the world. However, few studies applied multilevel regression techniques to explore the association of stroke risk with climate change and air pollution. In the study, we aimed to test the hypothesis that the disproportionately distributed stroke rates across the counties and cities within a country are significantly associated with air pollution and temperature. Methods: We used data from U.S. 1118 counties in 49 states, which had estimated measures of particulate matter (PM)2.5 for the years 2010-2013, and data from China 120 cities in 32 provinces (including 4 municipalities), which had measures of Air Pollution Index (API) for the years 2012-2013. We assessed the association between air quality and prevalence of stroke using spatial mapping, autocorrelation and multilevel regression models. Results: Findings from the U.S. show that the highest average PM2.5 level was in July (10.2 μg/m3) and the lowest in October (7.63 μg/m3) for the years 2010-2013. Annual average PM2.5 levels were significantly different across the 1118 counties, and were significantly associated with stroke rates. Multilevel regression analysis indicated that the prevalence of stroke significantly increased by 1.19% for every 10 μg/m3 increase of PM2.5 (p<0.001). Significant variability in PM2.5 by states was observed (p=0.019). More than 70% of the variation in stroke rates existed across the counties (p=0.017) and 18.7% existed across the states (p=0.047). In China, the highest API was observed in the month of December, with a result of 75.76 in 2012 and 97.51 in 2013. The lowest API was observed in July, with a result of 51.21 in 2012, and 54.23 in 2013. Prevalence of stroke was significantly higher in cities with higher API concentrations. The associations between air quality and risk of stroke were significantly mediated by temperatures. Conclusions: The study, using nationally representative data, is one of the first studies to address a positive and complex association between air quality and prevalence of stroke, and a potential interaction effect of temperatures on the air - stroke association.


Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 114
Author(s):  
Jiří Bílek ◽  
Ondřej Bílek ◽  
Petr Maršolek ◽  
Pavel Buček

Sensor technology is attractive to the public due to its availability and ease of use. However, its usage raises numerous questions. The general trustworthiness of sensor data is widely discussed, especially with regard to accuracy, precision, and long-term signal stability. The VSB-Technical University of Ostrava has operated an air quality sensor network for more than two years, and its large sets of valid results can help in understanding the limitations of sensory measurement. Monitoring is focused on the concentrations of dust particles, NO2, and ozone to verify the impact of newly planted greenery on the reduction in air pollution. The sensor network currently covers an open field on the outskirts of Ostrava, between Liberty Ironworks and the nearby ISKO1650 monitoring station, where some of the worst air pollution levels in the Czech Republic are regularly measured. In the future, trees should be allowed to grow over the sensors, enabling assessment of the green barrier effect on air pollution. As expected, the service life of the sensors varies from 1 to 3 years; therefore, checks are necessary both prior to the measurement and regularly during operation, verifying output stability and overall performance. Results of the PMx sensory measurements correlated well with the reference method. Concentration values measured by NO2 sensors correlated poorly with the reference method, although timeline plots of concentration changes were in accordance. We suggest that a comparison of timelines should be used for air quality evaluations, rather than particular values. The results showed that the sensor measurements are not yet suitable to replace the reference methods, and dense sensor networks proved useful and robust tools for indicative air quality measurements (AQM).


2021 ◽  
Author(s):  
Gabriela Iorga ◽  
George-Bogdan Burghelea

&lt;p&gt;Present research contributes to scientific knowledge concerning spatial and temporal variation of major air pollutants with high resolution at the country scale bringing statistical information on concentrations of NOx, O&lt;sub&gt;3&lt;/sub&gt;, CO, SO&lt;sub&gt;2&lt;/sub&gt; and particulate matter with an aerodynamic diameter below 10&amp;#160;&amp;#956;m (PM&lt;sub&gt;10&lt;/sub&gt;) and below 2.5&amp;#160;&amp;#956;m (PM&lt;sub&gt;2.5&lt;/sub&gt;) during the pandemic year 2020 using an observational data set from the Romanian National Air Quality Network in seven selected cities spread out over the country. These cities have different level of development, play regional roles, might have potential influence at European scale and they are expected to be impacted by different pollution sources. Among them, three cities (Bucharest, Bra&amp;#537;ov, Ia&amp;#537;i) appear frequently on the list of the European Commission with reference to the infringement procedure that the European Commission launched against Romania in the period 2007-2020 regarding air quality.&lt;/p&gt;&lt;p&gt;Air pollutant data was complemented with local meteorological parameters at each site (atmospheric pressure, relative humidity, temperature, global solar radiation, wind speed and direction). Statistics of air pollutants provide us with an overview of air pollution in main Romanian cities.&amp;#160; Correlations between meteorological parameters and ambient pollutant levels were analyzed. Lowest air pollution levels were measured during the lockdown period in spring, as main traffic and non-essential activities were severely restricted. Among exceptions were the construction activities that were not interrupted. During 2020, some of selected cities experienced few pollution episodes which were due to dust transport from Sahara desert. However, in Bucharest metropolitan area, some cases with high pollution level were found correlated with local anthropogenic activity namely, waste incinerations. Air mass origins were investigated for 72 hours back by computing the air mass backward trajectories using the HYSPLIT model. Dust load and spatial distribution of the aerosol optical depth with BSC-DREAM8b v2.0 and NMBM/BSC-Dust models showed the area with dust particles transport during the dust events.&lt;/p&gt;&lt;p&gt;The obtained results are important for investigations of sources of air pollution and for modeling of air quality.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;&amp;#160;&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgment:&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;The research leading to these results has received funding from the NO Grants 2014-2021, under Project contract no. 31/2020, EEA-RO-NO-2019-0423 project. NOAA Air Resources Laboratory for HYSPLIT transport model, available at READY website https://www.ready.noaa.gov &amp;#160;and the Barcelona dust forecast center for BSC-DREAM8b and NMBM/BSC-Dust models, available at: &amp;#160;https://ess.bsc.es/bsc-dust-daily-forecast are also acknowledged. The data regarding ground-based air pollution and meteorology by site was extracted from the public available Romanian National Air Quality Database, www.calitateaer.ro.&lt;/p&gt;


Author(s):  
Jānis Kleperis ◽  
Biruta Sloka ◽  
Justs Dimants ◽  
Ilze Dimanta ◽  
Jānis Kleperis

Abstract The analysis of the results of long-term air quality monitoring in Riga is presented, which shows that in city centre throughout the measurement time (2004-2014) according to the guidelines defined by the European Union directives and Latvian laws the limits of small particles PM10 and nitrogen dioxide (NO2) are exceeded. From the nature of appearance of pollution and from the research of morphology and composition of fine dust particles it was concluded that in the city centre where the monitoring was performed the main air pollutants are caused by internal combustion engine vehicles. The measures to reduce air pollution performed by two Action Programs (2004-2009; 2011-2015) of the City Council showed that there were only two possible ways to improve air quality in urban environment ‒ to decrease the number of traffic units and/or to decrease exhaust emissions from vehicles. From the analysis of energy consumption and resources used for it the conclusion was drawn that Latvia is dependent on fossil fuel import, especially in traffic sector (99 %). A new trend has been observed in Latvia ‒ the type of cars is changing: the number of gasoline cars rapidly decreases and number of diesel cars is growing. Both fuels in exhaust gases of second-hand cars are giving high emissions of fine particles (soot) and nitrogen oxides as compared with new cars; 72 % of cars on the roads of Latvia are more than 13 years old. The switch to bio-diesel can improve Latvian statistics according to CO2 reduction target for 2020 but not the concentration of PM10 and NO2 on streets with dense traffic. Therefore, to improve air quality in urban environment and simultaneously reduce the dependence of Latvia from fossil fuel import, a scenario is proposed for the changeover to zero-carbon technologies in transport and energy production. Hydrogen is analyzed from the point of view of availability of resources and commercialized technologies. The research of the public opinion was done because there is little awareness in society about hydrogen as energy carrier and simultaneously as fuel.


2016 ◽  
Vol 2 (2) ◽  
pp. 76-83
Author(s):  
Erwin Azizi Jayadipraja ◽  
Anwar Daud ◽  
Alimuddin Hamzah Assegaf ◽  
Maming

Backgrounds: A cement industry is one of anthropogenic sources of air pollution. In polluting the air, the industry creates some dust particles, nitrogen oxide (NO2), sulfur oxide (SO2), and carbon monoxide (CO).Research Purpose: The research aims at finding out the ambient air quality around a cement industry and relating it with the lung capacity of people living around the area.Methodology: This research uses cross sectional studies by measuring the ambient air quality in the morning, noon, and evening in four different settlements within 3 km from the cement industry. The measurement is then correlated with the FEV1 and FVC of lung capacity of people living around the area.Result: Of all four locations, three have ambient air quality (PM2.5 = 109.47 µg/Nm3, TSP = 454.7 µg/Nm3) that surpass the quality standard (PM2.5 = 65 µg/Nm3, TSP = 230 µg/Nm3). Of 241 respondents, the average level of FVC and FEV1 is respectively 1.9352 liter (SD: 0.45578) and 1.7486 liter (SD: 0.43874). Furthermore, the level of PM2.5 in the morning and at noon is respectively p=0.009 and p=0.003; the level of TSP in the morning and at noon is respectively p=0.003 and p=0.01; the level of NO2 in the morning is p=0.006; the level of SO2 in the morning, at noon and in the evening is respectively p=0.000, p=0.022, and p=0.000; and the level of CO in the morning, at noon and in the evening is respectively p=0.003, p=0.015, and p=0.024. Those levels are associated with the level of respondents’ FEV1. Moreover, the level of TSP in the morning is p=0.024; the level of SO2 in the morning and in the evening is p=0.007. These levels relate to the level of respondents’ FVC.Keywords: FVC, FEV1, CO, NO2, SO2, TSP, PM2.5, cement industry. 


2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Dirman Hanafi ◽  
Khairul Azlan A.Rahman

In the Modern era, the environmental issues have given significant impact to the human live. The air pollution indoor and outdoor environment sometimes dangerous to the human health and it needs to be justified. To fulfill this purpose, in this research tele-measurement process and technique based on the mobile robot with equipped by several air quality parameters sensors is developed. The robot is controlled using remote control and wireless communication system. The air quality in target area will be monitored by using sensors which will capture data and send it to the Central Control (laptop) for analyzing. And then to be able to monitor the certain area investigation, the mobile robot is guided by using wireless camera. From the experimental test, the robot able move to target area, capture the area condition and the air parameters monitor. Keywords: air pollution, tele-measured, mobile robot


Sign in / Sign up

Export Citation Format

Share Document