scholarly journals Air Pollution and Lung Capacity of People Living around the Cement Industry

2016 ◽  
Vol 2 (2) ◽  
pp. 76-83
Author(s):  
Erwin Azizi Jayadipraja ◽  
Anwar Daud ◽  
Alimuddin Hamzah Assegaf ◽  
Maming

Backgrounds: A cement industry is one of anthropogenic sources of air pollution. In polluting the air, the industry creates some dust particles, nitrogen oxide (NO2), sulfur oxide (SO2), and carbon monoxide (CO).Research Purpose: The research aims at finding out the ambient air quality around a cement industry and relating it with the lung capacity of people living around the area.Methodology: This research uses cross sectional studies by measuring the ambient air quality in the morning, noon, and evening in four different settlements within 3 km from the cement industry. The measurement is then correlated with the FEV1 and FVC of lung capacity of people living around the area.Result: Of all four locations, three have ambient air quality (PM2.5 = 109.47 µg/Nm3, TSP = 454.7 µg/Nm3) that surpass the quality standard (PM2.5 = 65 µg/Nm3, TSP = 230 µg/Nm3). Of 241 respondents, the average level of FVC and FEV1 is respectively 1.9352 liter (SD: 0.45578) and 1.7486 liter (SD: 0.43874). Furthermore, the level of PM2.5 in the morning and at noon is respectively p=0.009 and p=0.003; the level of TSP in the morning and at noon is respectively p=0.003 and p=0.01; the level of NO2 in the morning is p=0.006; the level of SO2 in the morning, at noon and in the evening is respectively p=0.000, p=0.022, and p=0.000; and the level of CO in the morning, at noon and in the evening is respectively p=0.003, p=0.015, and p=0.024. Those levels are associated with the level of respondents’ FEV1. Moreover, the level of TSP in the morning is p=0.024; the level of SO2 in the morning and in the evening is p=0.007. These levels relate to the level of respondents’ FVC.Keywords: FVC, FEV1, CO, NO2, SO2, TSP, PM2.5, cement industry. 

Author(s):  
Wiedya Putri Hartarani ◽  
Wildan Mahmud ◽  
Ery Mintorini

This study aims to determine the level of air pollution based on gas waste and ambient air quality, so it can be known which chimney releases waste gas the most and the least. It also knows which villages are most affected and safest from gas waste from PG Mojopanggung. Weighted Product method is used to calculate the level of air pollution. The results showed that from the side of the gas waste, the Stork I Boiler Chimney is the most discharging chimney gas waste, while the value of pollution by chimney kettle in PG Mojopanggung all does not exceed the standard quality that has been determined. Conversely, in terms of ambient air quality, Jatimulyo village is the village most affected by gas waste from PG Mojopanggung. There are some air pollutants that exceed the specified quality standard but not too much difference. To overcome the air pollutant that exceeds the quality standard, PG Mojopanggung performs the gas waste treatment and several other solutions.


Author(s):  
Md. Arif Hossen ◽  
Asiful Hoque

The ambient air quality data for particulate matter as well as criteria of gaseous pollutants were assembled during December 2013 to December 2015 from the Continuous Air Quality Monitoring Station (CAMS) located at Agrabad, Chittagong. The observation showed that during April- October, 24 hour average concentration of PM10 and PM2.5 were within the National Ambient Air Quality Standard (NAAQS) level but it increased occasionally by more than two and a half times during the whole non-monsoon period (November-March). The highest values found of PM2.5 were 321.1 µg/m3 in January, 2013 and 220.34 µg/m3 in December 2015. Whether, the highest alarming concentration of PM10 was reported as 474 µg/m3 in January 2007. The other gaseous pollutants such as SO2, NO2, O3, CO and Hydrocarbons remain well within the permissible limit except dry non-monsoon period. The yearly average increase of Air Quality Index (AQI) value indicates the growth rate of air pollution in Chittagong city. The main responsible pollutant for air pollution is found PM2.5.


2013 ◽  
Vol 807-809 ◽  
pp. 20-23 ◽  
Author(s):  
Tao Sheng ◽  
Jian Wu Shi ◽  
Sen Lin Tian ◽  
Li Mei Bi ◽  
Hao Deng ◽  
...  

According to the information of air quality which published by the urban air quality real-time publishing platform, the concentration characteristics of PM10 and PM2.5 were studied in Kunming (KM), Changsha (CS), Hangzhou (HZ), Shanghai (SH), Harbin (HEB), Beijing (BJ), Wuhan (WH) and Guangzhou (GZ). The results show that the concentrations of PM10 and PM2.5 exceeded the Ambient Air Quality Standard (GB3095-2012) in varying degrees in March, 2013. The concentrations of PM10 in Wuhan is the highest, reached 164μg/m3, exceeded the standard by 9.3%; the concentrations of PM2.5 is much higher in Wuhan, Changsha and Beijing, the average concentrations were 96μg/m3, 103μg/m3 and 110μg/m3, exceeded the standard by 28.0%, 37.3% and 46.7% respectively. The correlation of PM10 with PM2.5 in most of these cities was good in March. The correlation analysis of pollutant with meteorological factor in Hangzhou, Shanghai, Beijing and Guangzhou was also studied, the results show that the concentrations of PM10 and PM2.5 are weakly positive correlation with temperature in the four cities, negative correlation with relative humidity without Beijing, and negative correlation with wind speed.


Author(s):  
Jiban Jyoti Das

Industrialization is an important aspect of a growing economy. However, rapid industrialization has caused many serious impacts on the environment. One such impact is the deteriorating air quality, especially around industries. It is said that afforestation is the best and simplest way for improving the air quality. Also, trees and plants have been increasingly used as filters for dust particles around the home, traffic roads, etc. In scientific studies, it has also been found that trees and plant leaves can be used to assess the ambient air quality by an index called the Air pollution tolerance index. A literature search has been done on the scientific database like Sciencedirect and Researchgate to review the existing knowledge of Air pollution tolerance index and to find the tolerant and sensitive species based on it so that these species can be selectively planted to assess the ambient air quality and also to develop a better green belt around refineries and industries in Assam. The study has reviewed the linkage of the impact of air pollution on leaves of plants and trees through scientific evidence. Through such scientific reviews, the most tolerant species of trees and plants were chosen with the condition that it can grow under the climatic condition of Assam. The recommendation and suggestions of tolerant tree and plant species can be used for specific species plantations for developing green belts around refineries and industries in Assam. The recommendation of sensitive species can be used for monitoring ambient air quality with reference to other standard procedures. KEYWORDS: Air pollution tolerance index, Industries, Air- pollution, Green belt


Jurnal Dampak ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 1
Author(s):  
Vera Surtia Bachtiar ◽  
Puspa Safitri Sanggar Rani

The purpose of this research are to analysis air quality and dust impact to people that came from factory activities at residential area around factory location of PT. Semen Padang. Measuring of air quality conducted in 3 residential area that are Komplek RW 1, RT 3 Batu Gadang district, Perumnas Indarung RW. VII, and housing of UNAND Blok D Gadut, using Personal Dust Sampler. The result is respirable dust concentration at housing complex RW. 1 RT. 3 Batu Gadang district that is 0,33 mg/m, the Perumnas Indarung RW.VII that is 0,55 mg/m along with housing of UNAND Blok D Gadut that is 0,44 mg/m. Concentration of dust respirable at all are still below ambient air quality standard that exist on PP RI No. 41 Tahun 1999, 3 mg/m. Based on quesioner and puskesmas data proximate with use univariat analysis, negative impact who feels people are impact of health is eyes irritation disease and impact of environment especially community-owned material. Keywords: air quality, negative impact, residential area, respirable dust, PT. Semen Padang ABSTRAKPenelitian ini bermaksud untuk menganalisis kualitas udara dan dampak negatif yang dirasakan masyarakat dari debu yang berasal dari aktivitas pabrik di kawasan perumahan sekitar lokasi pabrik PT. Semen Padang. Pengukuran kualitas udara dilakukan di 3 kawasan perumahan yaitu komplek perumahan RW. 1 RT. 3 Kelurahan Batu Gadang, Perumnas Indarung RW. VII, dan Perumahan UNAND Blok D Gadut dengan menggunakan alat Personal Dust Sampler. Diperoleh hasil konsentrasi debu respirable pada komplek perumahan RT.3 RW.1 Kelurahan Batu Gadang sebesar 0,33 mg/m, pada Perumnas Indarung RW.VII sebesar 0,55 mg/m serta pada Perumahan UNAND Blok D Gadut sebesar 0,44 mg/m. Konsentrasi debu respirable pada ketiga lokasi masih berada di bawah ambang batas baku mutu udara di lingkungan, 3 mg/m. Berdasarkan kuesioner dan data puskesmas terdekat dengan menggunakan analisis univariat, dampak negatif yang dirasakan masyarakat adalah dampak terhadap kesehatan berupa penyakit iritasi mata dan dampak terhadap lingkungan khususnya pada kondisi material yang dimiliki masyarakat.Kata kunci: kualitas udara, dampak negatif, kawasan perumahan, debu respirable, PT. Semen Padang


Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 114
Author(s):  
Jiří Bílek ◽  
Ondřej Bílek ◽  
Petr Maršolek ◽  
Pavel Buček

Sensor technology is attractive to the public due to its availability and ease of use. However, its usage raises numerous questions. The general trustworthiness of sensor data is widely discussed, especially with regard to accuracy, precision, and long-term signal stability. The VSB-Technical University of Ostrava has operated an air quality sensor network for more than two years, and its large sets of valid results can help in understanding the limitations of sensory measurement. Monitoring is focused on the concentrations of dust particles, NO2, and ozone to verify the impact of newly planted greenery on the reduction in air pollution. The sensor network currently covers an open field on the outskirts of Ostrava, between Liberty Ironworks and the nearby ISKO1650 monitoring station, where some of the worst air pollution levels in the Czech Republic are regularly measured. In the future, trees should be allowed to grow over the sensors, enabling assessment of the green barrier effect on air pollution. As expected, the service life of the sensors varies from 1 to 3 years; therefore, checks are necessary both prior to the measurement and regularly during operation, verifying output stability and overall performance. Results of the PMx sensory measurements correlated well with the reference method. Concentration values measured by NO2 sensors correlated poorly with the reference method, although timeline plots of concentration changes were in accordance. We suggest that a comparison of timelines should be used for air quality evaluations, rather than particular values. The results showed that the sensor measurements are not yet suitable to replace the reference methods, and dense sensor networks proved useful and robust tools for indicative air quality measurements (AQM).


Sign in / Sign up

Export Citation Format

Share Document