scholarly journals Study on Hydrological Engineering Geological Conditions and Anti-leakage Measures

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Yiqiang Yu

With the continuous development of economy and society, people's ability to transform society has been improved. To break the constraints of hydrological and climatic conditions, some hydrology and water conservancy projects were constructed to meet the needs of human activities. In the construction of hydrological engineering, geological conditions are first surveyed to determine whether there are significant geological structure problems, in order to enhance the stability of hydrological engineering and reduce the probability of hydrological engineering leakage.

2017 ◽  
Vol 43 (3) ◽  
pp. 1465
Author(s):  
C. Loupasakis ◽  
D. Galanakis ◽  
D. Rozos

The morphological and geological setting of Greece, the active tectonics and the irrational human activities results to the fact that several natural sightseeing areas or even more, archaeological sites and monuments are located in areas with unfavourable geotechnical conditions. The selection of the proper support and protection measures in most of the cases appear to be very difficult because the applied measures must reassure the minimum aesthetic destruction of the sites. The natural sightseeing area of the Arvanitia walkway, in Nafplio city, is a typical example of site, with extensive human activities, manifesting serious rockfall stability problems. The applied stability analysis pointed out the geotechnical problems and allowed the suggestion of measures for the improvement of the geotechnical behaviour of the rock mass. The measures were planned with respect to the natural beauty and the historical character of the site. Further more, the stability problems located at the slopes of the Kastoria lake walkway are briefly presented. The differences between the two sites revealed the geotechnical problems arising when the landplaning engineers do not take under consideration the engineering geological conditions during the construction of infrastructures.


2014 ◽  
Vol 13 (2) ◽  
pp. 19-29
Author(s):  
Slávka Gałaś

Abstract Delimitation and characterization of areas of conflict are essential to assess suitability of land for different activities carried out in the field of rational land use. In the paper, delimitation of the conflict areas and conflicts categorization in terms of possibility of their overcoming, the scale of the range and the period of their occurrence exemplified by urban - rural commune Stary Sącz have been presented. The software ArcGIS 10.1, the method of maps superimposing and analysis of interactions between different geoenvironmental factors have been applied to obtain the goal of the investigation. Specific geological structure together with morphological and climatic conditions in Stary Sącz commune create ideal conditions for occurrence of con-flict areas on the background of the geological conditions. Accurate and early recognition of these conflicts - existing and potential ones, is a prerequisite for the environmental risk prevention and elimination of its effects through the proper preparation of planning documents and development plans and programs.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Hai Tian ◽  
Jianjun Gan ◽  
Hui Jiang ◽  
Chun Tang ◽  
Changtai Luo ◽  
...  

The formation and dynamic process analysis of the rockslide avalanche in mountainous areas are one of the consequences of the catastrophic accident. Such loose accumulation in upslope may saturate partially or completely when the stability of their accumulation dam is distributed or affected by rainfall. We present a case study with respect to the southern Wuyi Mountain located in eastern China, where the wet and rainy climate has led to dozens of similar rockslide hazards. The purpose of this paper was to analyse the mechanism and dynamic characteristics of the rockslide influenced by the same geological conditions and to predict the outburst susceptibility of similar landslides in the future. Detail field surveys, 3D laser scanning, and high-density electrical methods were used to collect the geotechnical information of the complex landslide, to identify the discontinuity between the landslide material and the bedrock, and to investigate the deformation characterization and dynamic process of the rockslide. Based on remote sensing interpretation and field investigation of the deformation process of a landslide in different times and different parts, the background, mechanism, and cause of the landslide were demonstrated. The landslide is controlled by the characteristics of the geological structure, including collapse, circular sliding, plane sliding, and debris flow. In addition, there are rock avalanches on the rear edge of the slope subjected to the combined action of rainfall and gravity. Moreover, there are some resistance anomaly areas of the aquifer and soil between 2 and 50 m where the resistivity is less than 120 ohm-m, and they were deduced to be full of water, confirming a “bathtub” type structure. The mechanism of the catastrophic landslide was a combination of the upper pushing deformation induced by rainfall line uplift and rotational; due to the ancient landslide reactivation in the transposition area, the velocity of the rockslide reached 40.11 m/s.


2010 ◽  
Vol 18 (4) ◽  
pp. 8-16 ◽  
Author(s):  
M. Marschalko ◽  
L. Hofrichterová ◽  
H. Lahuta

Engineering-geological conditions of the effect of a landslide from mining activityThe paper deals with a slope deformation in Řepiště (Paskov), which is located between the towns of Ostrava and Frýdek Místek; Řepiště is situated in the Ostrava-Karviná District within the reach of the effects of mining activity. The deformation involves the Paskov Mine, which is the only active mine in the Ostrava section of the district. The study included mapping complemented with a geophysical survey using resistance tomography; along with the information obtained from the inspection, it provided an overview of the engineering-geological conditions of the slope deformation. The interpretation of the data obtained identified a very complicated structure, including several levels of slip surfaces. The landslide is thus a textbook example of slope movements with a very complicated geological structure occupying an extensive spatial area in the mining landscape and affecting the stability of a road running directly through its body.


2006 ◽  
Vol 306-308 ◽  
pp. 1455-1460
Author(s):  
Jing Zeng ◽  
Qian Sheng ◽  
Qing Chun Zhou

The power house of Yantan extended hydropower project, with complex geological conditions such as fault f211 below the power house and quartzite on top of it, is a huge underground cavern with large span and high wall. In order to evaluate the stability of the power house surrounded by such complex geological structure, the numerical simulation excavation of power house with different location schemes were studied by the elasto-plastic 2D FEM method. The deformation and evolutive process of the stress with the progress of excavation were analyzed. On the condition ensuring the whole stability of surrounding rock mass, comparison optimization analyses were conducted on the power house location scheme. The rational location scheme was demonstrated. The final analyses results show that: (1) The mechanical properties of quartzite and its relative location to the power house has no obvious influence to the stability of surrounding rock mass.(2) The f211 is the main bad geological structure which affect the stability of power house. (3) The case of moving 10m upward of power house is the most rational scheme for the whole stability of power house. (4) The Supporting measures, which would has an obvious effect in controlling the influence on the stability of surrounding rock mass by weak geological structure, are suggested at the out-crop of f211.


2019 ◽  
Vol 98 ◽  
pp. 01034 ◽  
Author(s):  
Mingjun Liu ◽  
Changlai Xiao ◽  
Xiujuan Liang

In this study, a hydrochemical investigation was conducted in Shuangliao city to identify the hydrochemical characteristics and the quality of groundwater using descriptive statistics and correlation matrices. And on that basis, combined with Analytic hierarchy process (AHP), an improved two-level fuzzy comprehensive evaluation method is used to evaluate the groundwater quality. The results indicate that the major cations and anions in groundwater are Ca2+ and HCO3-, respectively. The chemical types are mainly HCO3—Ca type water, some areas are complicated due to the influence of human activities. The evaluation results show that the water quality in the area is mostly III type water, and the groundwater quality in some areas is IV or V water due to the influence of primary geological conditions or human activities. The groundwater quality in the East Liaohe River Valley and Shuangliao urban area is relatively poor, and in the northwest part which is the saline alkali soil area is also relatively poor.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


2020 ◽  
Vol 12 (1) ◽  
pp. 1094-1104
Author(s):  
Nima Dastanboo ◽  
Xiao-Qing Li ◽  
Hamed Gharibdoost

AbstractIn deep tunnels with hydro-geological conditions, it is paramount to investigate the geological structure of the region before excavating a tunnel; otherwise, unanticipated accidents may cause serious damage and delay the project. The purpose of this study is to investigate the geological properties ahead of a tunnel face using electrical resistivity tomography (ERT) and tunnel seismic prediction (TSP) methods. During construction of the Nosoud Tunnel located in western Iran, ERT and TSP 303 methods were employed to predict geological conditions ahead of the tunnel face. In this article, the results of applying these methods are discussed. In this case, we have compared the results of the ERT method with those of the TSP 303 method. This work utilizes seismic methods and electrical tomography as two geophysical techniques are able to detect rock properties ahead of a tunnel face. This study shows that although the results of these two methods are in good agreement with each other, the results of TSP 303 are more accurate and higher quality. Also, we believe that using another geophysical method, in addition to TSP 303, could be helpful in making decisions in support of excavation, especially in complicated geological conditions.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


Sign in / Sign up

Export Citation Format

Share Document