scholarly journals Finite element analysis of stuffing-box packing subjected to thermo-mechanical loads

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Kaoutar BAHOUM

The principal rule for the stuffing-box packings is to ensure the stem valve sealing. The behavior of these systems is affected by the operating conditions, which are the gland axial stress, the temperature, and the fluid pressure, as well as the mechanical and geometrical properties of the various components. In this paper, a numerical study using finite element method is presented to evaluate the radial contact stresses, the axial stresses, and the lateral pressure coefficients in a stuffing box system under the tightening gland load and the temperature field.

Author(s):  
Christoph Rocky Heinrich ◽  
Arnold Kühhorn ◽  
Klaus Steff ◽  
Nico Petry

Abstract The oil and gas, chemical, and process industries employ centrifugal compressors for a wide range of applications. Due to this, the conditions under which centrifugal compressors have to operate, vary significantly from case to case. Gas pipeline compressors, for example, may feature discharge pressures well over 100 bar. During the last decades, comprehensive research was conducted on the impact of high pressure operating conditions on the vibrational behavior of centrifugal compressors. Nowadays, it is well-known that an increase in gas pressure levels leads to a more pronounced interaction between the side cavities and the impeller, which results in a frequency shift of the acoustic and structural modes. For the safe operation of compressors, it is necessary to predict these coupled natural frequencies accurately. The state-of-the-art approach to achieve this objective is the finite element method. While this technique provides high-quality results, it incurs high computational costs and is, therefore, time-consuming. The authors of the current paper propose a generalized model to overcome this challenge. It uses the uncoupled modes of the impeller and side cavities in a modal superposition to approximate the coupled system's natural frequencies. In this way, the intended design geometries are considered while reducing the computational effort significantly. In a numerical study, the generalized model is applied to different systems of increasing complexity, and the results are compared to a finite element analysis. Finally, the paper concludes with a discussion of the limitations and benefits of all employed numerical methods.


2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 162
Author(s):  
A.A. Jameei ◽  
S. Pietruszczak

This paper provides a mathematical description of hydromechanical coupling associated with propagation of localized damage. The framework incorporates an embedded discontinuity approach and addresses the assessment of both hydraulic and mechanical properties in the region intercepted by a fracture. Within this approach, an internal length scale parameter is explicitly employed in the definition of equivalent permeability as well as the tangential stiffness operators. The effect of the progressive evolution of damage on the hydro-mechanical coupling is examined and an evolution law is derived governing the variation of equivalent permeability with the continuing deformation. The framework is verified by a numerical study involving 3D simulation of an axial splitting test carried out on a saturated sample under displacement and fluid pressure-controlled conditions. The finite element analysis incorporates the Polynomial-Pressure-Projection (PPP) stabilization technique and a fully implicit time integration scheme.


2013 ◽  
Vol 823 ◽  
pp. 247-250
Author(s):  
Jie Dong ◽  
Wen Ming Cheng ◽  
Yang Zhi Ren ◽  
Yu Pu Wang

Because of the huge lifting weight and complex structure of large-tonnage gantry crane and in order to effectively design and review it, this paper aims to carry out a research on its structural performance based on the method of theoretical calculation and finite element analysis. During the early period of design, the method of theoretical calculations is adopted, and after specific design it comes the finite element analysis, so as to get the results of analysis under a variety of operating conditions, which illustrates that the structural design and review of large-tonnage gantry crane based on theoretical calculations and finite element are feasible, and also verifies that the method of finite element is an effective way to find a real dangerous cross-section, thus providing the basis for the design and manufacture of the crane structure.


2021 ◽  
pp. 136943322110499
Author(s):  
Feleb Matti ◽  
Fidelis Mashiri

This paper investigates the behaviour of square hollow section (SHS) T-joints under static axial tension for the determination of stress concentration factors (SCFs) at the hot spot locations. Five empty and corresponding concrete-filled SHS-SHS T-joint connections were tested experimentally and numerically. The experimental investigation was carried out by attaching strain gauges onto the SHS-SHS T-joint specimens. The numerical study was then conducted by developing three-dimensional finite element (FE) T-joint models using ABAQUS finite element analysis software for capturing the distribution of the SCFs at the hot spot locations. The results showed that there is a good agreement between the experimental and numerical SCFs. A series of formulae for the prediction of SCF in concrete-filled SHS T-joints under tension were proposed, and good agreement was achieved between the maximum SCFs in SHS T-joints calculated from FE T-joint models and those from the predicted formulae.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Roman Kvasov ◽  
Lev Steinberg

This paper presents the numerical study of Cosserat elastic plate deformation based on the parametric theory of Cosserat plates, recently developed by the authors. The numerical results are obtained using the Finite Element Method used to solve the parametric system of 9 kinematic equations. We discuss the existence and uniqueness of the weak solution and the convergence of the proposed FEM. The Finite Element analysis of clamped Cosserat plates of different shapes under different loads is provided. We present the numerical validation of the proposed FEM by estimating the order of convergence, when comparing the main kinematic variables with an analytical solution. We also consider the numerical analysis of plates with circular holes. We show that the stress concentration factor around the hole is less than the classical value, and smaller holes exhibit less stress concentration as would be expected on the basis of the classical elasticity.


Author(s):  
Scott D. Ironside ◽  
L. Blair Carroll

Enbridge Pipelines Inc. operates the world’s longest and most complex liquids pipeline network. As part of Enbridge’s Integrity Management Program In-Line Inspections have been and will continue to be conducted on more than 15,000 km of pipeline. The Inspection Programs have included using the most technologically advanced geometry tools in the world to detect geometrical discontinuities such as ovality, dents, and buckles. During the past number of years, Enbridge Pipelines Inc. has been involved in developing a method of evaluating the suitability of dents in pipelines for continued service. The majority of the work involved the development of a method of modeling the stresses within a dent using Finite Element Analysis (FEA). The development and validation of this model was completed by Fleet Technology Limited (FTL) through several projects sponsored by Enbridge, which included field trials and comparisons to previously published data. This model combined with proven fracture mechanics theory provides a method of determining a predicted life of a dent based on either the past or future operating conditions of the pipeline. CSA Standard Z662 – Oil and Gas Pipeline Systems provides criteria for the acceptability of dents for continued service. There have been occurrences, however, where dents that meet the CSA acceptability criteria have experienced failure. The dent model is being used to help define shape characteristics in addition to dent depth, the only shape factor considered by CSA, which contribute to dent failure. The dent model has also been utilized to validate the accuracy of current In-Line Inspection techniques. Typically a dent will lose some of its shape as the overburden is lifted from the pipeline and after the indentor is removed. Often there can be a dramatic “re-rounding” that will occur. The work included comparing the re-rounded dent shapes from a Finite Element model simulating the removal of the constraint on the pipe to the measured dent profile from a mold of the dent taken in the field after it has been excavated. This provided a measure of the accuracy of the tool. This paper will provide an overview of Enbridge’s dent management program, a description of the dent selection process for the excavation program, and a detailed review of the ILI validation work.


2006 ◽  
Vol 129 (1) ◽  
pp. 58-65 ◽  
Author(s):  
B. Scott Kessler ◽  
A. Sherif El-Gizawy ◽  
Douglas E. Smith

The accuracy of a finite element model for design and analysis of a metal forging operation is limited by the incorporated material model’s ability to predict deformation behavior over a wide range of operating conditions. Current rheological models prove deficient in several respects due to the difficulty in establishing complicated relations between many parameters. More recently, artificial neural networks (ANN) have been suggested as an effective means to overcome these difficulties. To this end, a robust ANN with the ability to determine flow stresses based on strain, strain rate, and temperature is developed and linked with finite element code. Comparisons of this novel method with conventional means are carried out to demonstrate the advantages of this approach.


2007 ◽  
Vol 44 (01) ◽  
pp. 16-26
Author(s):  
Ömer Eksik ◽  
R. Ajit Shenoi ◽  
Stuart S. J. Moy ◽  
Han Koo Jeong

This paper describes the development of a finite element model in order to assess the static response of a top-hat-stiffened panel under uniform lateral pressure. Systematic calculations were performed for deflection, strain, and stress using the developed model based on the ANSYS three-dimensional solid element (SOLID45). The numerical modeling results were compared to the experimental findings for validation and to further understand an internal stress pattern within the different constituents of the panel for explaining the likely causes of the panel failure. Good correlation between experimental and numerical strains and displacements was achieved.


Sign in / Sign up

Export Citation Format

Share Document