scholarly journals A Review of the Building Blocks of Silicon Photonics: From Fabrication Perspective

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Md Jubayer Shawon Shawon ◽  
Feng Li

Silicon photonics is a disruptive semiconductor technology that taps into the extraordinary properties of light while taking full advantage of the already matured CMOS processes developed in the semiconductor industry. However, just like electronic industry in the 1970s, currently, Silicon Photonics is in its infancy. The fundamental building blocks of silicon photonics such as waveguides, lasers, modulators, etc. are yet to be fully optimized for low-cost-mass-manufacturing. In this paper, the current state-of-the-art related to developing and optimizing these aforementioned key components will be presented. The challenges of process integration regarding Silicon photonics will also be discussed.

2021 ◽  
Vol 17 ◽  
Author(s):  
Rajasekhar Chokkareddy ◽  
Suvardhan Kanchi ◽  
Inamuddin

Background: While significant strides have been made to avoid mortality during the treatment of chronic diseases, it is still one of the biggest health-care challenges that have a profound effect on humanity. The development of specific, sensitive, accurate, quick, low-cost, and easy-to-use diagnostic tools is therefore still in urgent demand. Nanodiagnostics is defined as the application of nanotechnology to medical diagnostics that can offer many unique opportunities for more successful and efficient diagnosis and treatment for infectious diseases. Methods: In this review we provide an overview of infectious disease using nanodiagnostics platforms based on nanoparticles, nanodevices for point-of-care (POC) applications. Results: Current state-of-the-art and most promising nanodiagnostics POC technologies, including miniaturized diagnostic tools, nanorobotics and drug delivery systems have been fully examined for the diagnosis of diseases. It also addresses the drawbacks, problems and potential developments of nanodiagnostics in POC applications for chronic diseases. Conclusions: While progress is gaining momentum in this field and many researchers have dedicated their time in developing new smart nanodevices for POC applications for various chronic diseases, the ultimate aim of achieving longterm, reliable and continuous patient monitoring has not yet been achieved. Moreover, the applicability of the manufactured nanodevices to rural patients for on-site diagnosis, cost, and usability are the crucial aspects that require more research, improvements, and potential testing stations. Therefore, more research is needed to develop the demonstrated smart nanodevices and upgrade their applicability to hospitals away from the laboratories.


ISRN Optics ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Zhou Fang ◽  
Ce Zhou Zhao

With the increasing bandwidth requirement in computing and signal processing, the inherent limitations in metallic interconnection are seriously threatening the future of traditional IC industry. Silicon photonics can provide a low-cost approach to overcome the bottleneck of the high data rate transmission by replacing the original electronic integrated circuits with photonic integrated circuits. Although the commercial promise has not been realized, this perspective gives huge impetus to the development of silicon photonics these years. This paper provides an overview of the progress and the state of the art of each component in silicon photonics, including waveguides, filters, modulators, detectors, and lasers, mainly in the last five years.


2018 ◽  
Author(s):  
Juan Cruz Landoni ◽  
Liya Wang ◽  
Anu Suomalainen

Deoxyribonucleoside triphosphates (dNTPs) are the reduced nucleotides used as the building blocks and energy source for DNA replication and maintenance in all living systems. They are present in highly regulated amounts and ratios in the cell, and their balance has been implicated in the most important cell processes, from determining the fidelity of DNA replication to affecting cell fate. Furthermore, many cancer drugs target biosynthetic enzymes in dNTP metabolism, and mutations in genes directly or indirectly affecting these pathways are the cause of devastating diseases. The accurate and systematic measurement of these pools is key to understand the mechanisms behind these diseases and their treatment. We present a new method for measuring dNTP pools from biological samples, utilising the current state-of-the-art polymerase method, modified to a solid-phase setting and optimised for larger scale measurements.


Author(s):  
Igor Karlovits ◽  

The concept of efficient utilisation of renewable bio-based materials (biomass feedstock) is the driving force in the green transformation to a more sustainable and circular society. Biorefineries or biochemical platforms convert and utilise different sources of biomass into fuels and other beneficial derivates like fibres and other bio-based chemicals. These can be used as building blocks for many potentially useful applications. In this review, we shall describe the current state of the art and trends in the conversion of lignocellulosic feedstock into materials which can be primarily used in packaging applications. The three main constituents (cellulose, hemicellulose and lignin) are being re-engineered into new products with higher added value. The main goal of all these downstream products is that they do not compete with animal feed and food applications. The main downstream products of different kind of transformations are different natural fibres which can be further processed into micro or nano fibrillated state and used for a broad application of fields from ink, adhesive and packaging materials. Also, fibres and its derivates can be bonded successfully into bio-composites or fibre-based foams applications for the protective packaging applications. Hemicellulose, as a second most abundant component, has been researched for applications in adhesives and paper and paperboard coatings. Lignin which is currently utilised as an energy source for the paper industry, has been recently actively researched. Lignin-based biopolymers have a potential to be used in many different applications from additives in the barrier coatings on the packaging to active packaging and even as lignin-based foams. All these applications are currently in the development stages and cover niche market segments, but are expected to grow and to be used in future markets.


Author(s):  
Sarah Tang ◽  
Vijay Kumar

This review surveys the current state of the art in the development of unmanned aerial vehicles, focusing on algorithms for quadrotors. Tremendous progress has been made across both industry and academia, and full vehicle autonomy is now well within reach. We begin by presenting recent successes in control, estimation, and trajectory planning that have enabled agile, high-speed flight using low-cost onboard sensors. We then examine new research trends in learning and multirobot systems and conclude with a discussion of open challenges and directions for future research.


Author(s):  
Jungwon Seo ◽  
Jamie Paik ◽  
Mark Yim

This article reviews the current state of the art in the development of modular reconfigurable robot (MRR) systems and suggests promising future research directions. A wide variety of MRR systems have been presented to date, and these robots promise to be versatile, robust, and low cost compared with other conventional robot systems. MRR systems thus have the potential to outperform traditional systems with a fixed morphology when carrying out tasks that require a high level of flexibility. We begin by introducing the taxonomy of MRRs based on their hardware architecture. We then examine recent progress in the hardware and the software technologies for MRRs, along with remaining technical issues. We conclude with a discussion of open challenges and future research directions.


Author(s):  
Svenja Stiber ◽  
Noriko Sata ◽  
Tobias Morawietz ◽  
Syed Asif Ansar ◽  
Thomas Jahnke ◽  
...  

Polymer electrolyte membrane water electrolysis (PEMWE) is the most promising technology for sustainable hydrogen production. However, it has been too expensive to compete with current state-of-the-art technologies due to the...


Author(s):  
Johannes Maximilian Kühn ◽  
Oliver Bringmann ◽  
Wolfgang Rosenstiel

AbstractThe developments in the semiconductor industry as predicted by institutions such as the ITRS present a difficult question to hardware and software developers alike: How to implement increasingly complex, power hungry, and critical applications reliably in today’s and tomorrow’s semiconductor technology? The present trend of semiconductor technology is characterized by a sharp increase in complexity, cost, and delicacy. Also, it does not scale along the demands which are still based on and often exceed Moore’s Law. In this chapter, we propose to exploit the architectural redundancies provided by potent, yet energy efficient massively parallel architectures, modeled using Dynamically Reconfigurable Processors (DRP). Using DRPs, we built an extensive cross-layer approach, offering different levels of reliability measures to operating system (OS) and software developers through low-cost hardware redundancy schemes and appropriate physical operating condition tuning. On the hardware side, online testing schemes and error detection are deployed to trigger dynamic remapping to avoid the usage of faulty components. This approach is further complemented through hardware health monitoring that can detect reliability issues such as negative bias temperature instability (NBTI) or hot carrier injection (HCI) before they surface as an error as well as further tuning of operating conditions to delay such phenomena from surfacing.


Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 40
Author(s):  
Jack Mulcahy ◽  
Frank H. Peters ◽  
Xing Dai

The article below presents a review of current research on silicon photonics. Herein, an overview of current silicon modulator types and modern integration approaches is presented including direct bonding methods and micro-transfer printing. An analysis of current state of the art silicon modulators is also given. Finally, new prospects for III–V-silicon integration are explored and the prospects of an integrated modulator compatible with current CMOS processing is investigated.


2010 ◽  
Vol 132 (12) ◽  
pp. 56-56
Author(s):  
Christer Bjorqivst

This article presents an overview of H2-IGCC research project. This project focuses on developing gas turbine (GT) technology optimised for the next generation. The H2-IGCC project is coordinated by the Brussels-based European Turbine Network (ETN)—an association with members of all stakeholders across the GT technology development value chain. ETN promotes environmentally sound gas turbine technology with reliable and low-cost operation. The objective of the H2-IGCC project is to provide and demonstrate technical solutions for state-of-the-art, high-efficiency, low-emissions GT technology that can be employed to IGCC applications. More specifically, the goal is to enable combustion of undiluted hydrogen-rich syngas with low NOx emissions and also allowing for high fuel flexibility. The challenge is to operate a stable and controllable GT on hydrogen-rich syngas with emissions and processes similar to current state-of-the-art natural GT engines.


Sign in / Sign up

Export Citation Format

Share Document