scholarly journals PENGEMBANGAN MATERIAL RINGAN SERAT GELAS PADA INDUSTRI KERETA API

2020 ◽  
Vol 19 (3) ◽  
pp. 187-194
Author(s):  
Oki Kurniawan ◽  
Willy Artha Wirawan ◽  
Akbar Zulkarnain

Abstract The use of composite materials has been developed in the railroad transportation industry sector in Indonesia. For example, PT INKA has used composite materials with fiber glass reinforcement. The purpose of this study is to determine the characteristics of tensile strength and bending strength of the composite material so that it can be proposed to be further developed and utilized by the manufacturing industry, especially the railroad industry. In this study, 4 types of matrix variations were examined, namely epoxy, repoxy, polyester, and bhispenol using fiber glass reinforcement. Tensile strength and bending strength tests were performed in accordance with the ASTM D-638 and the ASTM D-790 standards, respectively. The results of this study indicate that the variation of the matrix is very influential on the tensile strength and bending strength of composite materials. Keywords: composite material, glass fiber, tensile strength, bending strength  Abstrak Penggunaan material komposit mulai banyak dikembangkan di sektor industri trasportasi kereta api di Indone-sia. Sebagai contoh, PT INKA sudah menggunakan material komposit dengan penguat serat gelas. Tujuan penelitian ini adalah untuk mengetahui karakteristik kekuatan tarik dan kekuatan bending material komposit agar dapat diusulkan untuk lebih dikembangkan dan dimanfaatkan oleh industri manufaktur, khususnya industri kereta api. Pada penelitian ini digunakan 4 jenis variasi matriks, yaitu epoxy, repoxy, polyester, dan bhispenol dengan menggunakan penguat serat gelas. Pengujian kekuatan tarik menggunakan standar ASTM D-638 dan pengujian bending menggunakan standar ASTM D-790. Hasil studi ini menunjukkan bahwa variasi matriks sangat berpengaruh pada kekuatan tarik maupun kekuatan bending material komposit. Kata-kata kunci: material komposit, serat gelas, kekuatan tarik, kekuatan bending

2021 ◽  
Vol 7 (1) ◽  
pp. 085-090
Author(s):  
Sujita Darmo Darmo ◽  
Rudy Sutanto Sutanto

Fibrous composite materials continue to be researched and developed with the long-term goal of becoming an alternative to metal substitutes. Due to the nature of the fiber reinforced composite material, its high tensile strength, and low density compared to metal. In general, the composition of the composite consists of reinforcing fibers and a matrix as the binding material. The potential of natural fibers as a reinforcing composite material is still being developed and investigated. The research that has been done aims to determine the characteristics of the tensile strength of the composite strengthened with Hibiscus tiliaceust bark powder (HTBP) with alkaline NaOH and KOH treatment. The reinforcing material used is HTBP and the matrix is polyester resin, with volume fraction of 5%, 10% and 20% with an alkaline treatment of 5% NaOH and 5% KOH with immersion for 2 hours, 4 hours, 6 hours and 8 hours. Tensile testing specimens and procedures refer to ASTM D3039 standard. The results of this study showed the highest tensile strength of 34.96 MPa in the alkaline treatment of 5% KOH, soaking time of 8 hours with a volume fraction of 10% and the lowest tensile strength of 21.96 MPa of 5% KOH alkaline treatment, soaking time of 6 hours with a volume fraction of 20%. .with 10% volume fraction of 34.96 MPa and the lowest tensile strength was 5% KOH alkaline treatment at 6 hours immersion with 20% volume fraction.


2014 ◽  
Vol 918 ◽  
pp. 21-26
Author(s):  
Chen Kang Huang ◽  
Yun Ching Leong

In this study, the transport theorem of phonons and electrons is utilized to create a model to predict the thermal conductivity of composite materials. By observing or assuming the dopant displacement in the matrix, a physical model between dopant and matrix can be built, and the composite material can be divided into several regions. In each region, the phonon or electron scattering caused by boundaries, impurities, or U-processes was taken into account to calculate the thermal conductivity. The model is then used to predict the composite thermal conductivity for several composite materials. It shows a pretty good agreement with previous studies in literatures. Based on the model, some discussions about dopant size and volume fraction are also made.


2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


2021 ◽  
Vol 9 (2) ◽  
pp. 157
Author(s):  
Syah Banu Putra Sitepu ◽  
Bambang Admadi Harsojuwono ◽  
Amna Hartiati

This research aims to determine the effect of the mixture and the ratio of the composites and their interactions to the characteristics of the bioplastic composites and to determine the mix and ratio of the composites that produce the best characteristics of the bioplastic composites. The experimental design of this study used a randomized block design method. Factor I is a mixture of composite materials consisting of maizena-glucomannan, maizena-chitosan, and maizena-carrageenan. The second factor is the ratio of the composite material mixture which consists of 5 levels, namely 100: 0, 75:25, 50:50, 25:75 and 0: 100. The experiment resulted in 15 treatment combinations and were grouped into 2 groups when the process of making bioplastic composites was obtained, so that 30 experimental units were obtained. Data were analyzed for their diversity and continued with Duncan's multiple comparison test. The observed variables which tensile strength, elongation at break, modulus young, swelling, and biodegradation time. The results showed that the mixture and the ratio of the composites forming a very significant effect on tensile strength, elongation at break, elasticity, and swelling. The interaction has a very significant effect on tensile strength, elasticity and swelling and significantly affects the elongation at break of bioplastic composites. Meanwhile, the mixture and the ratio of the ingredients to form the composites had no significant effect on the biodegradation time. Maizena:glucomannan composite with ratio (25:75) produced the best characteristics of bioplastic composites with tensile strength values of 6.99 MPa, elongation at break of 16.5%, elasticity 42.39 MPa, swelling 78.78% and biodegradable time of 7 days. There are 2 variables that have met the standard, namely: elongation at break of bioplastic composites that meet the plastic Standard SNI 7188.7: 2016 and biodegradation time has met the international plastic standard ASTM 5336 and 3 variables that do not meet the standards, namely: Tensile strength (6,99 MPa) and elasticity (42,39 MPa) do not meet the Plastic Standard SNI 7188.7: 2016 and swelling (39,1%) does not meet international plastic standards (EN 317). Keywords : bioplastic composites, maizena, glucomannan, chitosan, carrageenan


Author(s):  
V. A. Kalinichenko ◽  
A. S. Kalinichenko ◽  
S. V. Grigoriev

To create friction pairs operating in severe working conditions, composite materials are now increasingly used. Composite materials obtained with the use of casting technologies are of interest due to the possibility to manufacture wide range of compositions at low price compared to powder metallurgy. Despite the fact that many composite materials have been sufficiently studied, it is of interest to develop new areas of application and give them the properties required by the consumer. In the present work the composite materials on the basis of silumin reinforced with copper granules were considered. Attention was paid to the interaction between the matrix alloy and the reinforcing phase material as determining the properties of the composite material. The analysis of distribution of the basic alloying elements in volume of composite material and also in zones of the interphases interaction is carried out. The analysis of the possibility of obtaining a strong interphase zone of contact between the reinforcing component and the matrix material without significant dissolution of the reinforcing material is carried out.


2019 ◽  
Vol 25 ◽  
pp. 22-31 ◽  
Author(s):  
Farhana Islam ◽  
M. Naimul Islam ◽  
Shahirin Shahida ◽  
Harun Ar Rashid ◽  
Nanda Karmaker ◽  
...  

Jute fabrics reinforced Unsaturated Polyester Resin (UPR)-based composites were prepared by conventional hand lay-up technique. Different proportions (5 to 50% by weight) of fibre content was used in preparation of the composite. Tensile Strength (TS), Tensile Modulus (TM), Bending Modulus (BM), Bending Strength (BS), Impact Strength (IS) of the fabricated composites were studied. Upon each addition of fiber content in the matrix, mechanical properties of the composites were increased. The Tensile Strength (TS) of the 5% and 50% fiber reinforced composites was 18 MPa and 42 MPa respectively. Scanning Electron Microscopy (SEM) showed interfacial properties of the composites and it was revealed that the bond between fiber and matrix was excellent.


2001 ◽  
Vol 691 ◽  
Author(s):  
T. Sakakibara ◽  
Y. Takigawa ◽  
K. Kurosawa

ABSTRACTWe prepared a series of (AgBiTe2)1−x(Ag2Te)x(0≤×≤1) composite materials by melt and cool down [1]. The Hall coefficient and the electrical conductivity were measured by the standard van der Pauw technique over the temperature range from 93K to 283K from which the Hall carrier mobility was calculated. Ag2Te had the highest mobility while the mobility of AgBiTe2was the lowest of all samples at 283K. However the mobility of the (AgBiTe2)0.125(Ag2Te)0.875composite material was higher than the motility of Ag2Te below 243K. It seems that a small second phase dispersed in the matrix phase is effective against the increased mobility.


2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040010
Author(s):  
Hsu-Chiang Kuan ◽  
Chin-Lung Chiang ◽  
Ming-Yuan Shen ◽  
Chen-Feng Kuan

In this study, we combine the coffee slag, metal powder with recycled petrochemical plastics (polystyrene, PS) to prepare circulation composite materials. It is an energy saving and carbon footprint reduction composite material compared with traditional one. The resulted PS/coffee composite has tensile strength 117.5 kgf/cm2 and flexural strength is 314.2 kgf/cm2. The heat deflection temperature (HDT) is 92[Formula: see text]C and the UV test fits the ASTM G154 requirement. The metal gross composite is with tensile strength 318.8 kgf/cm2 and flexural strength is 581.6 kgf/cm2. The HDT is 91[Formula: see text]C and the UV test fits the ASTM G154 requirement as well. Its reuse ratio can reach 85% for recycled PS. The resultant product has metal texture blinds with metal gross and wood-like blinds with coffee aroma flavor.


Author(s):  
V. T. Senyut

The article presents the results of a study of composite materials based on diamond-lonsdaleite abrasive (DLA) and various binders (Fe–Ti mechanocomposite, silicon carbide SiC). A metal-matrix composite material with a multimodal nano- and microlevel structure, characterized by increased adhesion of diamond grains to the binder, is obtained on the basis of impact diamonds and a Fe–Ti nano-mechanical composite. It is shown that the use of impact diamonds in comparison with synthetic diamonds makes it possible to reduce the pressure of thermobaric treatment by 30–50 % at the same sintering temperatures. The use of Fe–Ti–DLA composites in the process of magnetic-abrasive polishing (MAP) makes it possible to increase the removal rate of material based on silicon by 1.5–2 times and reduce the processing time by 30 % compared to ferroabrasive powder (FAP) based on synthetic diamonds. The effect of adding of silicon carbide on the process of obtaining a superhard composite material impact diamond – SiC is investigated. It is found that adding of SiC helps to reduce the defectiveness of the material and increase the homogeneity of its structure in comparison with the material without adding of a binder. In this case, an increase in the content of SiC and Si also leads to an inversion of the structure type of the superhard composite from polycrystalline to matrix. It is found that the additional use of amorphous soot and boron affects the refinement of the matrix structure of the composite material due to the formation of boron carbide and secondary finely dispersed silicon carbide.


2021 ◽  
Vol 4 (01) ◽  
pp. 07-12
Author(s):  
Hilmi Iman Firmansyah ◽  
Sulistyono Sulistyono ◽  
Hangga Wicaksono

Composite is a material consisting of a mixture or combination of two or more materials, either micro or macro, where the properties of the material are different in shape and chemical composition from the original substance. In this study, the composite was tested to determine the tensile strength using simulation. Composite material modeling consists of carbon fiber as reinforcement and epoxy resin as the matrix. Then the composite material was given a uniaxial loading with a loading value of 50 N. By using variations in the orientation of the fiber angle 45ᵒ/90ᵒ/-45ᵒ, 45ᵒ/90ᵒ/-45ᵒ and 60ᵒ/45ᵒ/-60ᵒ. This study aimed to determine the effect of fiber angle orientation on tensile strength, maximum deformation and location of maximum stress on carbon fiber composites. The best composite design is the composite with fiber angle orientation of 45ᵒ/90ᵒ/-45ᵒ with a tensile stress value of 3.6 MPa and the smallest deformation of 0.0644 mm.


Sign in / Sign up

Export Citation Format

Share Document