scholarly journals Application of polymer in biomedical implication

2021 ◽  
Vol 14 (2) ◽  
pp. 098-114
Author(s):  
Meheta Datta ◽  
Kazi Madina Maraz ◽  
Naziza Rahman ◽  
Ruhul A. Khan

Polymers are serving the mankind in various ways since long. Over the previous number of years, these polymers have found great demand in various domains. These materials are intensively studied over the years for a various range of applications Polymeric materials have found notable applications within the sphere of biomedical. This might ensue to their useful properties, such as: easy processing, lightweight and suppleness, high strength to weight, availability and recyclability. Polymeric materials also are able to alter their chemical or physical properties upon exposure to external stimuli. Thanks to these properties, they're widely applied for biomedical applications like drug delivery, tissue engineering scaffolds, wound dressings, and antibacterial coatings.

2021 ◽  
Vol 28 ◽  
Author(s):  
Wei Liu ◽  
Haishun Du ◽  
Ting Zheng ◽  
Chuanling Si

Background: Bacterial cellulose (BC) and its derivatives are a rich source of renewable natural ingredients, which are of great significance for biomedical and medical applications but have not yet been fully exploited. BC is a high-purity, biocompatible, and versatile biomaterial that can be used alone or in combination with other ingredients such as polymers and nanoparticles to provide different structural organization and function. This review briefly introduces the research status of BC hydrogels, focusing on the preparation of BC based composite hydrogels and their applications in the field of biomedicine, particularly the wound dressings, tissue engineering scaffolds, and drug delivery. Methods: By reviewing the most recent literature on this subject, we summarized recent advances in the preparation of BC based composite hydrogels and their advances in biomedical applications, including wound dressings, tissue engineering, and drug delivery. Results: BC composite hydrogels have broadened the field of application of BC and developed a variety of BC-based biomaterials with excellent properties. BC-based hydrogels have good biocompatibility and broad application prospects in the biomedical field. Conclusion: BC based composite hydrogels with the advantages of 3D structure, non-toxicity, high purity, and good biocompatibility, have great prospects in the development of sustainable and multifunctional biomaterials for biomedical applications.


2020 ◽  
Vol 8 (7) ◽  
pp. 481 ◽  
Author(s):  
Tatyana A. Kuznetsova ◽  
Boris G. Andryukov ◽  
Natalia N. Besednova ◽  
Tatyana S. Zaporozhets ◽  
Andrey V. Kalinin

The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.


2020 ◽  
Vol 7 (10) ◽  
pp. 4032-4040
Author(s):  
Esam Bashir Yahya ◽  
Marwa Mohammed Alzalouk ◽  
Khalifa A. Alfallous ◽  
Abdullah F. Abogmaza

Aerogels have been steadily developed since its first invention to become one of the most promising materials for various medical and non-medical applications. It has been prepared from organic and inorganic materials, in pure forms or composites. Cellulose-based aerogels are considered one of the promising materials in biomedical applications due to their availability, degradability, biocompatibility and non-cytotoxicity compared to conventional silica or metal-based aerogels. The unique properties of such materials permit their utilization in drug delivery, biosensing, tissue engineering scaffolds, and wound dressing. This review presents a summary of aerogel development as well as the properties and applications of aerogels. Herein, we further discuss the recent works pertaining to utilization of cellulose-based aerogels for antibacterial delivery.


Author(s):  
Emma Barrett-Catton ◽  
Murial L. Ross ◽  
Prashanth Asuri

Hydrogels are used for various biomedical applications due to their biocompatibility, capacity to mimic the extracellular matrix, and ability to encapsulate and deliver cells and therapeutics. However, traditional hydrogels have a few shortcomings, especially regarding their physical properties, thereby limiting their broad applicability. Recently, researchers have investigated the incorporation of nanoparticles (NPs) into hydrogels to improve and add to the physical and biochemical properties of hydrogels. This brief review focuses on papers that describe the use of nanoparticles to improve more than one property of hydrogels. Such multifunctional hydrogel nanocomposites have enhanced potential for various applications, including tissue engineering, drug delivery, wound healing, bioprinting and biowearable devices.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (2) ◽  
pp. 114-119 ◽  
Author(s):  
Abraham D. Stroock ◽  
Mario Cabodi

Biomedical applications—prostheses, tissue engineering, drug delivery, and wound healing—demand increasingly sophisticated characteristics from the materials that come into contact with living systems in the laboratory and the clinic. With the development of microfluidics, there is an opportunity to create active biomaterials based on embedded microfluidic structures. These structures allow for control of the concentrations of soluble chemicals and hydrodynamic stresses within the material and at its interfaces, and thus allow one to tailor the environment experienced by the living tissue. In this article, we review initial efforts to develop these microfluidic biomaterials and present considerations regarding the required characteristics of the materials and of the microfluidic-mediated mass transfer. As specific examples, we present work toward microfluidic control of mass transfer in scaffolds for tissue engineering and in wound dressings.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 856
Author(s):  
Emma Barrett-Catton ◽  
Murial L. Ross ◽  
Prashanth Asuri

Hydrogels are used for various biomedical applications due to their biocompatibility, capacity to mimic the extracellular matrix, and ability to encapsulate and deliver cells and therapeutics. However, traditional hydrogels have a few shortcomings, especially regarding their physical properties, thereby limiting their broad applicability. Recently, researchers have investigated the incorporation of nanoparticles (NPs) into hydrogels to improve and add to the physical and biochemical properties of hydrogels. This brief review focuses on papers that describe the use of nanoparticles to improve more than one property of hydrogels. Such multifunctional hydrogel nanocomposites have enhanced potential for various applications including tissue engineering, drug delivery, wound healing, bioprinting, and biowearable devices.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1668 ◽  
Author(s):  
Elena Vismara ◽  
Andrea Bernardi ◽  
Chiara Bongio ◽  
Silvia Farè ◽  
Salvatore Pappalardo ◽  
...  

Among nanocelluloses, bacterial nanocellulose (BNC) has proven to be a promising candidate in a range of biomedical applications, from topical wound dressings to tissue-engineering scaffolds. Chemical modifications and incorporation of bioactive molecules have been obtained, further increasing the potential of BNC. This study describes the incorporation of vancomycin and ciprofloxacin in BNC and in modified BNC to afford bioactive BNCs suitable for topical wound dressings and tissue-engineering scaffolds. BNC was modified by grafting glycidylmethacrylate (GMA) and further cross-linking with ethylene glycol dimethacrylate (EGDMA) with the formation of stable C–C bonds through a radical Fenton-type process that involves generation of cellulose carbon centred radicals scavenged by methacrylate structures. The average molar substitution degree MS (MS = methacrylate residue per glucose unit, measured by Fourier transform infrared (FT–IR) analysis) can be modulated in a large range from 0.1 up to 3. BNC-GMA, BNC-EGDMA and BNC-GMA-EGDMA maintain the hydrogel status until MS reaches the value of 1. The mechanical stress resistance increase of BNC-GMA and BNC-GMA-EGDMA of MS around 0.8 with respect to BNC suggests that they can be preferred to BNC for tissue-engineering scaffolds in cases where the resistance plays a crucial role. BNC, BNC-GMA, BNC-EGDMA and BNC-GMA-EGDMA were loaded with vancomycin (VC) and ciprofloxacin (CP) and submitted to release experiments. BNC-GMA-EGDMA of high substitution degree (0.7–1) hold up to 50 percentage of the loaded vancomycin and ciprofloxacin amount, suggesting that they can be further investigated for long-term antimicrobial activity. Furthermore, they were not colonized by Staphylococcus aureus (S.A.) and Klebsiella pneumonia (K.P.). Grafting and cross-linking BNC modification emerges from our results as a good choice to improve the BNC potential in biomedical applications like topical wound dressings and tissue-engineering scaffolds.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3343
Author(s):  
Mariana Pinteala ◽  
Marc J. M. Abadie ◽  
Radu D. Rusu

Stimuli-responsive, “smart” polymeric materials used in the biomedical field function in a bio-mimicking manner by providing a non-linear response to triggers coming from a physiological microenvironment or other external source. They are built based on various chemical, physical, and biological tools that enable pH and/or temperature-stimulated changes in structural or physicochemical attributes, like shape, volume, solubility, supramolecular arrangement, and others. This review touches on some particular developments on the topic of stimuli-sensitive molecular tools for biomedical applications. Design and mechanistic details are provided concerning the smart synthetic instruments that are employed to prepare supra- and macro-molecular architectures with specific responses to external stimuli. Five major themes are approached: (i) temperature- and pH-responsive systems for controlled drug delivery; (ii) glycodynameric hydrogels for drug delivery; (iii) polymeric non-viral vectors for gene delivery; (iv) metallic nanoconjugates for biomedical applications; and, (v) smart organic tools for biomedical imaging.


2019 ◽  
Author(s):  
AS Arampatzis ◽  
K Theodoridis ◽  
E Aggelidou ◽  
KN Kontogiannopoulos ◽  
I Tsivintzelis ◽  
...  

2021 ◽  
Author(s):  
Marissa Morales-Moctezuma ◽  
Sebastian G Spain

Nanogels have emerged as innovative platforms for numerous biomedical applications including gene and drug delivery, biosensors, imaging, and tissue engineering. Polymerisation-induced thermal self-assembly (PITSA) has been shown to be suitable...


Sign in / Sign up

Export Citation Format

Share Document