scholarly journals Smart Supra- and Macro-Molecular Tools for Biomedical Applications

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3343
Author(s):  
Mariana Pinteala ◽  
Marc J. M. Abadie ◽  
Radu D. Rusu

Stimuli-responsive, “smart” polymeric materials used in the biomedical field function in a bio-mimicking manner by providing a non-linear response to triggers coming from a physiological microenvironment or other external source. They are built based on various chemical, physical, and biological tools that enable pH and/or temperature-stimulated changes in structural or physicochemical attributes, like shape, volume, solubility, supramolecular arrangement, and others. This review touches on some particular developments on the topic of stimuli-sensitive molecular tools for biomedical applications. Design and mechanistic details are provided concerning the smart synthetic instruments that are employed to prepare supra- and macro-molecular architectures with specific responses to external stimuli. Five major themes are approached: (i) temperature- and pH-responsive systems for controlled drug delivery; (ii) glycodynameric hydrogels for drug delivery; (iii) polymeric non-viral vectors for gene delivery; (iv) metallic nanoconjugates for biomedical applications; and, (v) smart organic tools for biomedical imaging.

2021 ◽  
Vol 11 (20) ◽  
pp. 9541
Author(s):  
Zhichu Xiang ◽  
Mouquan Liu ◽  
Jun Song

Biocompatible nanosystems based on polymeric materials are promising drug delivery nanocarrier candidates for antitumor therapy. However, the efficacy is unsatisfying due to nonspecific accumulation and drug release of the nanoparticles in normal tissue. Recently, the nanosystems that can be triggered by tumor-specific stimuli have drawn great interest for drug delivery applications due to their controllable drug release properties. In this review, various polymers and external stimuli that can be employed to develop stimuli-responsive polymeric nanosystems are discussed, and finally, we delineate the challenges in designing this kind of Nanomedicine to improve the therapeutic efficacy.


2021 ◽  
Vol 14 (2) ◽  
pp. 098-114
Author(s):  
Meheta Datta ◽  
Kazi Madina Maraz ◽  
Naziza Rahman ◽  
Ruhul A. Khan

Polymers are serving the mankind in various ways since long. Over the previous number of years, these polymers have found great demand in various domains. These materials are intensively studied over the years for a various range of applications Polymeric materials have found notable applications within the sphere of biomedical. This might ensue to their useful properties, such as: easy processing, lightweight and suppleness, high strength to weight, availability and recyclability. Polymeric materials also are able to alter their chemical or physical properties upon exposure to external stimuli. Thanks to these properties, they're widely applied for biomedical applications like drug delivery, tissue engineering scaffolds, wound dressings, and antibacterial coatings.


Author(s):  
Ranhua Xiong ◽  
Ronald X. Xu ◽  
Chaobo Huang ◽  
Stefaan De Smedt ◽  
Kevin Braeckmans

This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel biomedical applications including bio-imaging, drug delivery and ablation of tumor tissues.


The researchers across the world are actively engaged in strategic development of new porous aerogel materials for possible application of these extraordinary materials in the biomedical field. Due to their excellent porosity and established biocompatibility, aerogels are now emerging as viable solutions for drug delivery and other biomedical applications. This chapter aims to cover the diverse aerogel materials used across the globe for different biomedical applications including drug delivery, implantable devices, regenerative medicine encompassing tissue engineering and bone regeneration, and biosensing.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Dinesh K. Patel ◽  
Yu-Ri Seo ◽  
Ki-Taek Lim

Stimuli-responsive materials, also known as smart materials, can change their structure and, consequently, original behavior in response to external or internal stimuli. This is due to the change in the interactions between the various functional groups. Graphene, which is a single layer of carbon atoms with a hexagonal morphology and has excellent physiochemical properties with a high surface area, is frequently used in materials science for various applications. Numerous surface functionalizations are possible for the graphene structure with different functional groups, which can be used to alter the properties of native materials. Graphene-based hybrids exhibit significant improvements in their native properties. Since functionalized graphene contains several reactive groups, the behavior of such hybrid materials can be easily tuned by changing the external conditions, which is very useful in biomedical applications. Enhanced cell proliferation and differentiation of stem cells was reported on the surfaces of graphene-based hybrids with negligible cytotoxicity. In addition, pH or light-induced drug delivery with a controlled release rate was observed for such nanohybrids. Besides, notable improvements in antimicrobial activity were observed for nanohybrids, which demonstrated their potential for biomedical applications. This review describes the physiochemical properties of graphene and graphene-based hybrid materials for stimuli-responsive drug delivery, tissue engineering, and antimicrobial applications.


2017 ◽  
Vol 8 (1) ◽  
pp. 127-143 ◽  
Author(s):  
Menglian Wei ◽  
Yongfeng Gao ◽  
Xue Li ◽  
Michael J. Serpe

Responsive polymer-based materials are capable of altering their chemical and/or physical properties upon exposure to external stimuli. This review highlights their use for sensing and biosensing, drug delivery, and artificial muscles/actuators.


2019 ◽  
Vol 9 (5) ◽  
pp. 825 ◽  
Author(s):  
Nemany Hanafy ◽  
Stefano Leporatti ◽  
Maged El-Kemary

Hydrogels are widely used materials which have many medical applications. Their ability to absorb aqueous solutions and biological fluids gives them innovative characterizations resulting in increased compatibility with biological activity. In this sense, they are used extensively for encapsulation of several targets such as biomolecules, viruses, bacteria, and mammalian cells. Indeed, many methods have been published which are used in hydrogel formulation and biomedical encapsulations involving several cross-linkers. This system is still rich with the potential of undiscovered features. The physicochemical properties of polymers, distinguished by their interactions with biological systems into mucoadhesive, gastro-adhesive, and stimuli responsive polymers. Hydrogel systems may be assembled as tablets, patches, gels, ointments, and films. Their potential to be co-formulated as nanoparticles extends the limits of their assembly and application. In this review, mucoadhesive nanoparticles and their importance for biomedical applications are highlighted with a focus on mechanisms of overcoming mucosal resistance.


Sign in / Sign up

Export Citation Format

Share Document