scholarly journals Adsorption of Pb2+ from waste water using modified and unmodified plantain pseudo stem waste as adsorbent

2021 ◽  
Vol 3 (1) ◽  
pp. 093-096
Author(s):  
Idongesit O Ekpenyong ◽  
Effiong J Okon ◽  
Kufre E Essien ◽  
Okon E Okon

This study was carried out to evaluate the potentials of plantain pseudo stem waste as adsorbent in the removal of Pb2+ from aqueous solution. Filament obtained from Plantain pseudo stem were dried, cut into chips and ground using electric grinder. The powdered sample obtained was soaked in ethanol for 24 hours and wash with water several times to remove the extractive component. It was then dried in the oven. Modification reaction was carried out on the powdered sample using Fenton reagent (Fe2+/H2O2). Both the modified and unmodified adsorbents were used for the adsorption of Pb2+ from aqueous solution. Factors considered were effect of contact time and effect of adsorbate (Pb2+) concentrations. The results revealed that in all the adsorption studies, the adsorption capacity of modified adsorbent was higher than that of the unmodified adsorbent. However, adsorption capacities increase with increase in contact time and decreases with increase in the adsorbate concentration.

Author(s):  
Ningsih Ika Pratiwi ◽  
Annisa Huwaida ◽  
Shinta Indah ◽  
Denny Helard

Pumice is known as a low-cost material with a porous structure, has the potential as an adsorbent to remove various kinds of pollutant compounds. The abundance of pumice is found in Sungai Pasak area and it never been utilized. This study was performed to see the ability of Sungai Pasak pumice as an adsorbent for ammonium removal in water along with its ability to be regenerated. The study was carried out triplo in batches to obtain optimum adsorption conditions which were then used in desorption experiments using HCl 0.1 M agent for regeneration process. The optimum conditions obtained: adsorbate pH 6, adsorbent dose 0.3 g/l, contact time 30 minutes, adsorbent diameter 63 µm and adsorbate concentration 4 mg/l. The results showed that pumice has ability to remove ammonium with adsorption capacity at optimum conditions were 47.06% and 6.27 mg/g with Freundlich's isotherm equation (R2=0.997). Acid agents are able to adsorb ammonium from pumice with an average desorption percentage 88.89% after 2 times of reuse, proving that acidic agents are able to regenerate pumice adsorbents so they can be reused. The potential for adsorption and regeneration of the Sungai Pasak pumice can be utilized to treat water with ammonium such as groundwater and waste water.


2012 ◽  
Vol 27 ◽  
pp. 1-10 ◽  
Author(s):  
O. A. Ekpete ◽  
M. Horsfall ◽  
T. Tarawou

The adsorption of chlorophenol by an agro-based activated carbon prepared from fluted pumpkin stem waste was investigated to assess its possible use as adsorbent. The effect of pH, initial adsorbate concentration, adsorbent dosage and contact time were studied to identify adsorption capacity of the fluted activated carbon (FAC). The results were compared to a commercial activated carbon (CAC). Adsorption data were modelled with the Langmuir, Elovich and Dubinin-Radushkevich classical adsorption isotherms. The data fitted the Elovich isotherm model better than Langmuir and Dubinin-Radushkevich. According to the evaluation using Elovich equation showed the sorption capacity obtained for chlorophenol on fluted activated carbon as 47.62 mg/g and chlorophenol for commercial activated carbon as 38.46 mg/g. The data showed that fluted activated carbon derived from fluted pumpkin stem waste, an environmental nuisance in Nigeria could be converted to a useful activated carbon for chlorophenol removal in aqueous solution.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6435 J. Nepal Chem. Soc., vol. 27, 2011 p.1-10Uploaded date: 16 July, 2012


2017 ◽  
Vol 13 (27) ◽  
pp. 425
Author(s):  
Azeh Yakubu ◽  
Gabriel Ademola Olatunji ◽  
Folahan Amoo Adekola

This investigation was conducted to evaluate the adsorption capacity of nanoparticles of cellulose origin. Nanoparticles were synthesized by acid hydrolysis of microcrystalline cellulose/cellulose acetate using 64% H3PO4 and characterized using FTIR, XRD, TGA-DTGA, BET and SEM analysis. Adsorption kinetics of Pb (II) ions in aqueous solution was investigated and the effect of initial concentration, pH, time, adsorbent dosage and solution temperature. The results showed that adsorption increased with increasing concentration with removal efficiencies of 60% and 92.99% for Azeh2 and Azeh10 respectively for initial lead concentration of 3 mg/g. The effects of contact time showed that adsorption maximum was attained within 24h of contact time. The maximum adsorption capacity and removal efficiency were achieved at pH6. Small dose of adsorbent had better performance. The kinetics of adsorption was best described by the pseudo-second-Order model while the adsorption mechanism was chemisorption and pore diffusion based on intra-particle diffusion model. The isotherm model was Freundlich. Though, all tested isotherm models relatively showed good correlation coefficients ranging from 0.969-1.000. The adsorption process was exothermic for Azeh-TDI, with a negative value of -12.812 X 103 KJ/mol. This indicates that the adsorption process for Pb by Azeh-TDI was spontaneous. Adsorption by Azeh2 was endothermic in nature.


2014 ◽  
Vol 529 ◽  
pp. 22-25 ◽  
Author(s):  
Li Wei Xie ◽  
Ze Long Xu ◽  
Yan Hua Huang ◽  
Shuang Cao ◽  
Zong Qiang Zhu ◽  
...  

Adsorption of ammonia nitrogen from aqueous solution onto the bagasse adsorbent has been investigated to evaluate the effects of Adsorbent dose, initial NH4+-N concentration, and pH on the removal systematically. With increasing initial concentration, the amount of ammonia nitrogen sorbed onto the adsorbent increased until it gradually decreased due to the initial concentration exceed 50 mg·L-1, and the maximum adsorption capacity was observed for the sample to be 1.31 mg·g-1 at the initial concentration of 30 mg·L-1, and the corresponding removal rates decreased from 94.01 to 3.89%, with increase in initial concentration from 5 to 100 mg·L-1. Adsorption capacities decreased from 6.04 to 0.49 mg·g-1 with increasing adsorbent dose from 0.1 to 1.5g. What’s more, under alkaline condition, the removal efficiency of ammonia nitrogen from aqueous solution onto the samples were superior to that under acidity and neutrality condition.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 890 ◽  
Author(s):  
Gabriela Kamińska ◽  
Mariusz Dudziak ◽  
Edyta Kudlek ◽  
Jolanta Bohdziewicz

Grainy Hal-CNT composites were prepared from powder halloysite nanoclay (Hal) and carbon nanotubes (CNTs). The effect of the amount and type of CNTs, as well as calcination temperature on morphology and properties of Hal-CNT composites and their adsorption capacity of anthracene (ANT), were studied. The surface topography of granules was heterogenous, with cracks and channels created during granulation of powder clay and CNTs. In FTIR, spectra were exhibited only in the bands arising from halloysite, due to its dominance in the granules. The increase in the heating temperature to 550 °C resulted in mesoporosity/macroporosity of the granules, the lowest specific surface area (SSA) and poorest adsorption potential. Overall, SSA of all Hal-CNT composites were higher than raw Hal, and by itself, heated halloysite. The larger amount of CNTs enhanced adsorption kinetics due to the more external adsorption sites. The equilibrium was established with the contact time of approximately 30 min for the sample Hal-SWCNT 85:15, while the samples with loading 96:4, it was 60–90 min. Adsorption isotherms for ANT showed L1 type, which is representative for the sorbents with limited adsorption capacity. The Langmuir model described the adsorption process, suggesting a monolayer covering. The sample Hal-SWCNT 85:15 exhibited the highest adsorption capacity of ANT, due to its highest SSA and microporous character.


2020 ◽  
Vol 9 (3) ◽  
pp. 197-206
Author(s):  
Thaharah Ramadhani ◽  
Faisal Abdullah ◽  
Indra Indra ◽  
Abrar Muslim ◽  
Suhendrayatna Suhendrayatna ◽  
...  

The use of a low-cost biosorbent prepared from Ipomoea pes-caprae stem for the adsorption of Cd(II) ions from aqueous solution at different contact times, biosorbent sizes, pH values, and initial Cd(II) ions concentration solution was investigated. The biosorbent was analyzed using Fourier-transform infrared spectroscopy (FT-IR) to find important IR-active functional groups. A scanning electron microscope (SEM) was used to examine the biosorbent morphology. The experimental results showed the highest Cd(II) ions adsorption was 29.513 mg/g  under an optimal condition as initial Cd(II) ions concentration of 662.77 mg/L, 1 g dose, 80-min contact time, pH 5, 75 rpm of stirring speed, 1 atm, and 30 oC. Cd(II) ions' adsorption kinetics obeys the linearized pseudo-second-order kinetics (R2 = 0.996), and the adsorption capacity is based on the optimal condition, and the rate attained was 44.444 mg/g and 0.097 g/mg. Min, respectively. Besides, the adsorption isotherms were very well fitted by the linearized Langmuir isotherm model, and the monolayer adsorption capacity and pore volume determined was 30.121 mg/g and 0.129 L/mg, respectively. These results indicated the chemisorption nature


2019 ◽  
Vol 19 (2) ◽  
pp. 224-235
Author(s):  
Wissam I Tayeh

In this study ,the adsorption of an industrial blue dye was investigated by usingpomegranate peel in different size . The effect of the process parameters such as , contact time; adsorbate concentration pH) and (temperature ) are reported . "Nearly 2-3 hr of contact timeare found to be sufficient for the adsorption to reach equilibrium" (Abetter fixation wasobtained at acidic pH (2) and room temperature 25?C.


2012 ◽  
Vol 518-523 ◽  
pp. 2740-2744
Author(s):  
Ying Li ◽  
Chang Hai Li ◽  
Dong Mei Jia ◽  
Yue Jin Li

A newly modified resin can be impregnated with hydrated ferric oxide on the base of D301 resin. The article involved batch experiments to investigate the effect of concentration, contact time, pH and temperature. The results showed that the maximum adsorption was found at 6 h,3.0 pH and 298 K temperature. The maximum adsorption capacity was 961.95 mg/g at 1200 mg/L initial β-naphthalenesulfonic acid concentration. The equilibrium adsorption was fitted by Temkin isotherm.


2014 ◽  
Vol 1056 ◽  
pp. 134-137
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Xin Pang

The absorbents including MnO2, fly ash, NaY zeolite and activated carbon powder were used to study the adsorption capacity of phenol. The effect of contact time and dosage of absorbents on the removal efficiency were investigated. The experimental results suggested that activated carbon powder is most effective absorbent, following as fly ash, MnO2 and NaY zeolite which the removal efficiency could reached 98.41%,77.65%, 60.19% and 24.13% at 90min respectively. The data indicated that the activated carbon powder was favorable for adsorption while NaY zeolite was unfit for absorbent of phenol from aqueous solution due to lower removal.


2013 ◽  
Vol 726-731 ◽  
pp. 1883-1889
Author(s):  
Brim Stevy Ondon ◽  
Bing Sun ◽  
Zhi Yu Yan ◽  
Xiao Mei Zhu ◽  
Hui Liu

Microwave energy was used to prepare modified activated carbons (GAC, GAC/MW, GAC/Ni, and GAC/Cu). The modified activated carbons were used for phenol adsorption in aqueous solution. The adsorption conditions were optimized. Adsorption capacities of the different modified activated carbons were evaluated. The effect of microwave pretreatment of activated carbons was investigated. A comparative study on the activated carbons adsorption capacities was also investigated. Under optimal conditions the results showed that there was no obvious effect on activated carbons adsorption when rising temperature and pH during the adsorption process. Stirring has a very high effect on the activated carbons adsorption capacity. The adsorption capacity of the modified activated carbons reaches 95%. MW/GAC, GAC/Ni and GAC/Cu adsorptive capacity was higher compared to the Granulated Activated Carbon (GAC) used as received. GAC treated with microwave energy has highest adsorption capacity. The adsorption capacity of GAC loaded with ion Ni2+ is higher than the activated carbon loaded with Cu2+. The untreated GAC has the lowest adsorption capacity. These results can be explained by the effect of microwave irradiation on GAC.The activated carbon loaded with Ni2+ adsorbs more microwave energy than the GAC loaded with Cu2+.


Sign in / Sign up

Export Citation Format

Share Document