NANOTAGS FOR IMPROVED CUTTING DEPTH CORRELATION

2021 ◽  
Author(s):  
Martin E. Poitzsch ◽  
◽  
S. Sherry Zhu ◽  
Marta Antoniv ◽  
Nouf M. Aljabri ◽  
...  

During a drilling operation, rock cuttings are often sampled off a shale shaker for lithology and petrophysical characterization. These analyses play an important role in describing the subsurface; and it is important that the depth origin of the cuttings be accurately determined. Traditionally, mud-loggers determine the depth origin of the sampled cuttings by calculating the lag time required for the cuttings to travel from the bit to the surface. These calculations, however, can contain inaccuracies in the depth correlation due to the shuffling and settling of cuttings as they travel with drilling fluid to the surface, due to unplanned conditions like drilling an overgauge hole, and due to other unforeseen drilling events, especially critical in horizontal sections. We therefore aimed to remedy these inaccuracies by developing a series of styrene-based nanoparticles that tagged the cuttings as they were generated at the drillbit. These “NanoTags” were tested while drilling in Q4, 2019; and the results indicated that the NanoTags did in fact have the potential to identify some systematic errors compared with traditional mud logging calculations.

Author(s):  
Martin E. Poitzsch ◽  
◽  
S. Sherry Zhu ◽  
Marta Antoniv ◽  
Nouf M. Aljabri ◽  
...  

During a drilling operation, rock cuttings are often sampled off a shale shaker for lithology and petrophysical characterization. These analyses play an important role in describing the subsurface, and it is important that the depth origin of the cuttings be accurately determined. Traditionally, mud loggers determine the depth origin of the sampled cuttings by calculating the lag time required for the cuttings to travel from the bit to the surface. These calculations, however, can contain inaccuracies in the depth correlation due to the shuffling and settling of cuttings as they travel with drilling fluid to the surface, due to unplanned conditions like drilling an overgauge hole, and due to other unforeseen drilling events, especially critical in horizontal sections. We, therefore, aimed to remedy these inaccuracies by developing a series of styrene-based nanoparticles that tagged the cuttings as they were generated at the drill bit. These “NanoTags” were tested while drilling in Q4 2019, and the results indicated that the NanoTags did, in fact, have the potential to identify some systematic errors compared with traditional mud-logging calculations.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2021 ◽  
Author(s):  
S. Sherry Zhu ◽  
Marta Antoniv ◽  
Martin Poitzsch ◽  
Nouf Aljabri ◽  
Alberto Marsala

Abstract Manual sampling rock cuttings off the shale shaker for lithology and petrophysical characterization is frequently performed during mud logging. Knowing the depth origin where the cuttings were generated is very important for correlating the cuttings to the petrophysical characterization of the formation. It is a challenge to accurately determine the depth origin of the cuttings, especially in horizontal sections and in coiled tubing drilling, where conventional logging while drilling is not accessible. Additionally, even in less challenging drilling conditions, many factors can contribute to an inaccurate assessment of the depth origin of the cuttings. Inaccuracies can be caused by variation of the annulus dimension used to determine the lag time (and thus the depth of the cuttings), by the shifting or scrambling of cuttings during their return trip back to the surface, and by the mislabelling of the cuttings during sampling. In this work, we report the synthesis and application of polystyrenic nanoparticles (NanoTags) in labeling cuttings for depth origin assessment. We have successfully tagged cuttings using two NanoTags during a drilling field test in a carbonate gas well and demonstrated nanogram detection capability of the tags via pyrolysis-GCMS using an internally developed workflow. The cuttings depth determined using our tags correlates well with the depth calculated by conventional mud logging techniques.


2021 ◽  
Author(s):  
Meor M. Meor Hashim ◽  
M. Hazwan Yusoff ◽  
M. Faris Arriffin ◽  
Azlan Mohamad ◽  
Tengku Ezharuddin Tengku Bidin ◽  
...  

Abstract The restriction or inability of the drill string to reciprocate or rotate while in the borehole is commonly known as a stuck pipe. This event is typically accompanied by constraints in drilling fluid flow, except for differential sticking. The stuck pipe can manifest based on three different mechanisms, i.e. pack-off, differential sticking, and wellbore geometry. Despite its infrequent occurrence, non-productive time (NPT) events have a massive cost impact. Nevertheless, stuck pipe incidents can be evaded with proper identification of its unique symptoms which allows an early intervention and remediation action. Over the decades, multiple analytical studies have been attempted to predict stuck pipe occurrences. The latest venture into this drilling operational challenge now utilizes Machine Learning (ML) algorithms in forecasting stuck pipe risk. An ML solution namely, Wells Augmented Stuck Pipe Indicator (WASP), is developed to tackle this specific challenge. The solution leverages on real-time drilling database and supplementary engineering design information to estimate proxy drilling parameters which provide active and impartial pattern recognition of prospective stuck pipe events. The solution is built to assist Wells Real Time Centre (WRTC) personnel in proactively providing a holistic perspective in anticipating potential anomalies and recommending remedial countermeasures before incidents happen. Several case studies are outlined to exhibit the impact of WASP in real-time drilling operation monitoring and intervention where WASP is capable to identify stuck pipe symptoms a few hours earlier and provide warnings for stuck pipe avoidance. The presented case studies were run on various live wells where restrictions are predicted stands ahead of the incidents. Warnings and alarms were generated, allowing further analysis by the personnel to verify and assess the situation before delivering a precautionary procedure to the rig site. The implementation of the WASP will reduce analysis time and provide timely prescriptive action in the proactive real-time drilling operation monitoring and intervention hub, subsequently creating value through cost containment and operational efficiency.


2008 ◽  
Vol 75 (4) ◽  
pp. 981-990 ◽  
Author(s):  
Jessica C. Wilks ◽  
Ryan D. Kitko ◽  
Sarah H. Cleeton ◽  
Grace E. Lee ◽  
Chinagozi S. Ugwu ◽  
...  

ABSTRACT Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K+/H+ antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.


2013 ◽  
Vol 423-426 ◽  
pp. 649-652 ◽  
Author(s):  
Jin Bang Cui ◽  
Ji Hong Zhang ◽  
Qing Zhong Zhu ◽  
Bi Wu Chen

The 3# high rank coal in Qinshui basin frequently takes place of falling block, sloughing hole, leaking and pipe-stuck during drilling operation. The third open of 12-11-3H well in Qinping is consist of 2 main-branch and 6 sub-branch, using fuzzy-ball drilling fluid for 3 days accomplishing a footage of 4 189.49m. In order to adjust performance of drilling fluid, mix 4 fuzzy-ball drilling fluid additives SDS, SDBS, HES PAM together according to different well condition. The density of this drilling fluid is from 0.96 to 1.08g/cm3. The plastic viscosity of it is from 7 to 17mPa.s, the yield value is from 4.0 to 10.22Pa. After using this fuzzy-ball drilling fluid, the drilling rate has increase to 95%, completing the geological demand with an average drilling rate of 12.65m/h. Compared with adjacent well, the drilling rate has been raised 11.55% with no serious falling block, sloughing or leaking in whole well. However the solid control equipments still need to be strengthened for further improving drilling rate and economic benefits.


2021 ◽  
Vol 5 (2) ◽  
pp. 61-67
Author(s):  
Indah Sulistiyowati ◽  
Moh Imam Muhyiddin

One way to prevent the transmission and spread of Covid-19 is to always keep ourselves and our environment clean. Maintaining personal and environmental hygiene can be done by using antiseptics and disinfectants. Disinfectants that are not used properly will be bad for humans. That is why so far the spraying of disinfectants for the prevention of COVID-19 has been carried out by human workers who are dressed in complete Personal Protective Equipment (PPE) using manual sprayers. This is certainly very risky to humans who do the spraying manually. The objective of this research is to minimize the risk of spraying disinfectants, by using a robotic power to spray disinfectant based on the Internet of Things (IoT) and a camera. This robot is operated by using a smartphone while to determine the environmental conditions around it is used a camera. From the test results, it obtained data that the robot works well and is quite reliable due to the wider scope limit because it uses an IoT connection to communicate with smartphones. The results of camera readings on laptops are also quite clear, although the higher the resolution on the display, the lag time required to transfer images to the laptop affects.


Sign in / Sign up

Export Citation Format

Share Document