scholarly journals In vitroAnticancer Evaluation of Saponins Obtained From Spirulina platensis on MDA, HepG2, and MCF7 Cell Lines

2019 ◽  
Vol 3 (4) ◽  
pp. 25-32
Author(s):  
Mahboobeh Akbarizare ◽  
Hamideh Ofoghi ◽  
Mahnaz Hadizadeh

Introduction: Microalgae are known for their bioactive compounds with potential applications as antimicrobial, antiaging, and anticancer activities. Spirulina platensis (S. platensis) is a filamentous and photosynthetic microorganism that has 25 kinds of vitamins and minerals that contain many compounds with biotic activity such as alkaloids, phenolic compounds, terpenoids, and saponins. Saponins are mainly present in plants; while there are few studies about their role in microalgae. This study aims to investigate the anticancer potential of extracted saponins from S. platensis. Methods: Saponins were extracted; using distilled water and n-butanol. The total extracted saponin was dried and weighed. The cellular viability of HepG2, MCF-7, and MDA- MB-123 cell lines was evaluated; using MTT assay after 24 h treatment with 0.02-2 mg/ ml of saponins extracted from S. platensis. Morphology of cell lines was evaluated by invert microscopy. Results: Total saponin extracted from S. platensis was estimated at 28±0.0005 mg/g dry wt. Thin-layer chromatography profiles showed four bands for saponins with Rf values of 0.44, 0.48, 0.50, and 0.55. The cytotoxic activity after 24 h treatment with 0.02-2 mg/ml of saponins was a concentration-dependent manner. The highest toxicity of saponins with IC50=0.22 mg/ml was observed in MDA-MB-123 cells. In HepG2 and MCF-7 cells IC50 value was obtained in 0.35 mg/ml and 0.4 mg/ml, respectively. Conclusions: This is the first report to evaluate the anticancer effects of saponins from S. platensis in liver and breast cancers. The result showed that saponins from Spirulina decrease cancer cellular viability. Therefore, these compounds can be a candidate for anticancer agents.

2021 ◽  
Author(s):  
ulviye acar çevik ◽  
Ismail Celik ◽  
Ayşen IŞIK ◽  
Yusuf Özkay ◽  
Zafer Asım Kaplancıklı

Abstract In this study, due to the potential anticancer effects of the benzimidazole ring system, a series of benzimidazole-1,3,4-oxadiazole derivatives were synthesized and characterized by 1H NMR, 13C NMR, and MS spectra analyses. In the in vitro anticancer assay, all the compounds tested anticancer activities using MTT-based assay against five cancer cell lines (MCF-7, A549, HeLa, C6, and HepG2). Among them, compound 5a exhibited the most potent activity with IC50 values of 5,165±0,211 μM and 5,995±0,264 μM against MCF-7 and HepG2 cell lines. Compound 5a was included in the BrdU test to determine the DNA synthesis inhibition effects for both cell types. Furthermore, compound 5c was also found to be more effective than doxorubicin on the HeLa cell line. The selectivity of anticancer activity was evaluated in NIH3T3 (mouse embryo fibroblast cell line) cell line. In vitro, enzymatic inhibition assays of aromatase enzyme were performed for compound 5a acting on the MCF-7 cell line. For compound 5a, in silico molecular docking against aromatase enzyme was performed to determine possible protein-ligand interactions and binding modes.


2019 ◽  
Vol 18 (11) ◽  
pp. 1606-1616 ◽  
Author(s):  
Mehlika D. Altıntop ◽  
Belgin Sever ◽  
Ahmet Özdemir ◽  
Sinem Ilgın ◽  
Özlem Atlı ◽  
...  

Background and Methods: In an attempt to develop potent antitumor agents, the synthesis of a series of N-(6-substituted benzothiazol-2-yl)-2-[(5-(arylamino)-1,3,4-thiadiazol-2-yl)thio]acetamides (1-14) was described and their cytotoxic effects on A549 human lung adenocarcinoma, MCF-7 human breast adenocarcinoma, HepG2 human hepatocellular carcinoma and NIH/3T3 mouse embryonic fibroblast cell lines were investigated using MTT assay. <p> Results: Phenyl-substituted compounds (8-14) were found to be more effective than naphthyl-substituted compounds (1-7) on cancer cells. Compounds 8, 9, 10, 12, 13 and 14 were identified as the most potent anticancer agents on MCF-7 and HepG2 cell lines and therefore their effects on DNA synthesis and apoptosis/necrosis in MCF-7 cell line were evaluated. Among these compounds, N-(6-methoxybenzothiazol-2-yl)-2-[(5- (phenylamino)-1,3,4-thiadiazol-2-yl)thio]acetamide (13) was the most selective anticancer agent against MCF-7 and HepG2 cell lines with a SI value of 100. On the other hand, compounds 8, 9, 10, 12, 13 and 14 inhibited DNA synthesis in MCF-7 cell line in a dose-dependent manner. Flow cytometric analyses clearly indicated that the compounds showed significant anticancer activity against MCF-7 cell line via the induction of apoptosis dose dependently. <p> Conclusion: According to in vitro assays, compounds 8, 9, 10, 12, 13 and 14 stand out as promising candidates for further studies.


2021 ◽  
Vol 2021 ◽  
pp. 1-27
Author(s):  
Ghada M. Safwat ◽  
Kamel M. A. Hassanin ◽  
Eman T. Mohammed ◽  
Essam Kh. Ahmed ◽  
Mahmoud R. Abdel Rheim ◽  
...  

Heterocycles containing thienopyrimidine moieties have attracted attention due to their interesting biological and pharmacological activities. In this research article, we reported the synthesis of a series of new hybrid molecules through merging the structural features of chalcones and pyridothienopyrimidinones. Our results indicated that the synthesis of chalcone-thienopyrimidine derivatives from the corresponding thienopyrimidine and chalcones proceeded in a relatively short reaction time with good yields and high purity. Most of these novel compounds exhibited moderate to robust cytotoxicity against HepG2 and MCF-7 cancer cells similar to that of 5-fluorouracil (5-FU). The results indicated that IC50 of the two compounds (3b and 3g) showed more potent anticancer activities against HepG2 and MCF-7 than 5-FU. An MTT assay and flow cytometry showed that only 3b and 3g had anticancer activity and antiproliferative activities at the G1 phase against MCF-7 cells, while six compounds (3a-e and 3g) had cytotoxicity and cell cycle arrest at different phases against HepG2 cells. Their cytotoxicity was achieved through downregulation of Bcl-2 and upregulation of Bax, caspase-3, and caspase-9. Although all tested compounds increased oxidative stress via increment of MDA levels and decrement of glutathione reductase (GR) activities compared to control, the 3a, 3b, and 3g in HepG2 and 3b and 3g in MCF-7 achieved the target results. Moreover, there was a positive correlation between cytotoxic efficacy of the compound and apoptosis in both HepG2 ( R 2 = 0.531 ; P = 0.001 ) and MCF-7 ( R 2 = 0.219 ; P = 0.349 ) cell lines. The results of molecular docking analysis of 3a-g into the binding groove of Bcl-2 revealed relatively moderate binding free energies compared to the selective Bcl-2 inhibitor, DRO. Like venetoclax, compounds 3a-g showed 2 violations from Lipinski’s rule. However, the results of the ADME study also revealed higher drug-likeness scores for compounds 3a-g than for venetoclax. In conclusion, the tested newly synthesized chalcone-pyridothienopyrimidinone derivatives showed promising antiproliferative and apoptotic effects. Mechanistically, the compounds increased ROS production with concomitant cell cycle arrest and apoptosis. Therefore, regulation of the cell cycle and apoptosis are possible targets for anticancer therapy. The tested compounds could be potent anticancer agents to be tested in future clinical trials after extensive pharmacodynamic, pharmacokinetic, and toxicity profile investigations.


Author(s):  
Venkatagiri Noole ◽  
Thotla Krishna ◽  
Sudhakar Godeshala ◽  
Seyedehmelika Meraji ◽  
Kaushal Rege ◽  
...  

Background and Objective: Chrysin and its derivatives proved to possess potential anti-tumour activity. Materials and Methods: A new series of chrysin analogs containing 1,2,3-triazoles with different substituent groups (5a-5l) was designed, synthesized, and evaluated as potential anticancer agents. The synthesized compounds were characterized using FT-IR, 1H NMR 13C NMR spectroscopy and mass spectrometry. Resulsts: The anticancer activities of the synthesized compounds were studied in four cancer cell lines viz.PC3, PC3-PSMA, MCF-7 and UM-UC-3 using doxorubicin as standard. Among all the tested compounds 5c was found as most active with IC50 value of 10.8 ± 0.04 µM in PC3 cells and 20.53 ± 0.21 µMin MCF-7 cells respectively. Flow cytometry analyses indicated that synthesized compounds 5a,5c and 5h arrested MCF-7 cells at the G2/M phase in a dose-dependent manner. Conclusion: Chyrsin derivatives could be novel anticancer agents.


2021 ◽  
Author(s):  
Shiva Akhlaghi ◽  
Azar mostoufi ◽  
Hadi kalantar ◽  
Masood Fereidoonnezhad

Abstract Pyrazinoic acid or pyrazine-2-carboxylic acid (PA), due to its nitrogenous heteroaromatic ring, can be explored as an anticancer agent. Here, a series of twenty novels PA derivatives have been synthesized and characterized using IR, NMR, and mass spectrums. Their cytotoxic activity was evaluated against three different cancer cell lines, including lung (A549), breast (MCF-7), and colon (HT-29). P16, the most potent compound, showed moderate cytotoxicity with IC50 of 6.11 μM, 10.64 μM, and 14.92 μM, against the A549, MCF-7, and HT-29 cell lines, respectively. Furthermore, the effect of this compound against MRC5 as a non-tumoral lung cell line, exhibited a selectivity index of 9.02. The apoptotic induction activity of P16 was also performed on the A549 cell line. The results showed that as the concentration of the compound increases (from 3 to 6 μM), the percentage of induction of apoptosis increases from 8.54% to 72.4%. Electrophoretic gel mobility shift assays showed that P16 was also able to ROS induce DNA cleavage in the presents of H2O2 (1.0 mM) in dose-dependent manner. Molecular docking was also applied to anticipate the binding locations and the binding of the synthesized compound with Bcl-2 apoptosis regulator and DNA as their proposed targets.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2177
Author(s):  
Paola Oliva ◽  
Valentina Onnis ◽  
Elisa Balboni ◽  
Ernest Hamel ◽  
Francisco Estévez-Sarmiento ◽  
...  

Induction of apoptosis is a common chemotherapeutic mechanism to kill cancer cells The thiazole system has been reported over the past decades as a building block for the preparation of anticancer agents. A novel series of 2-arylalkylamino-4-amino-5-(3′,4′,5′-trimethoxybenzoyl)-thiazole derivatives designed as dual inhibitors of tubulin and cyclin-dependent kinases (CDKs) were synthesized and evaluated for their antiproliferative activity in vitro against two cancer cell lines and, for selected highly active compounds, for interactions with tubulin and cyclin-dependent kinases and for cell cycle and apoptosis effects. Structure-activity relationships were elucidated for various substituents at the 2-position of the thiazole skeleton. Among the synthesized compounds, the most active analogues were found to be the p-chlorobenzylamino derivative 8e as well as the p-chloro and p-methoxyphenethylamino analogues 8f and 8k, respectively, which inhibited the growth of U-937 and SK-MEL-1 cancer cell lines with IC50 values ranging from 5.7 to 12.2 μM. On U-937 cells, the tested compounds 8f and 8k induced apoptosis in a time and concentration dependent manner. These two latter molecules did not affect tubulin polymerization (IC50 > 20 μM) nor CDK activity at a single concentration of 10 μM, suggesting alternative targets than tubulin and CDK for the compounds.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4302
Author(s):  
Xiao-Long Sun ◽  
Mei-Lin Zhu ◽  
Yi-Qun Dai ◽  
Hong-Mei Li ◽  
Bo-Han Li ◽  
...  

Magnolol (MAG), a biphenolic neolignan, has various biological activities including antitumor effects. In this study, 15 MAG derivatives were semi-synthesized and evaluated for their in vitro anticancer activities. From these derivatives, compound 6a exhibited the best cytotoxic activity against four human cancer cell lines, with IC50 values ranging from 20.43 to 28.27 μM. Wound-healing and transwell assays showed that compound 6a significantly inhibited the migration and invasion of MDA-MB-231 cells. In addition, Western blotting experiments, performed using various concentrations of 6a, demonstrated that it downregulates the expression of HIF-1α, MMP-2, and MMP-9 in a concentration-dependent manner. Overall, these results suggest that substituting a benzyl group having F atoms substituted at the C2 position on MAG is a viable strategy for the structural optimization of MAG derivatives as anticancer agents.


2020 ◽  
Vol 19 (16) ◽  
pp. 2010-2018
Author(s):  
Youstina W. Rizzk ◽  
Ibrahim M. El-Deen ◽  
Faten Z. Mohammed ◽  
Moustafa S. Abdelhamid ◽  
Amgad I.M. Khedr

Background: Hybrid molecules furnished by merging two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery. Currently, coumarin hybrids have attracted the keen attention of researchers to discover their therapeutic capability against cancer. Objective: The present study aimed to evaluate the in vitro antitumor activity of a new series of hybrid molecules containing coumarin and quinolinone moieties 4 and 5 against four cancer cell lines. Materials and Methods: A new series of hybrid molecules containing coumarin and quinolinone moieties, 4a-c and 5a-c, were synthesized and screened for their cytotoxicity against prostate PC-3, breast MCF-7, colon HCT- 116 and liver HepG2 cancer cell lines as well as normal breast Hs-371 T. Results: All the synthesized compounds were assessed for their in vitro antiproliferative activity against four cancer cell lines and several compounds were found to be active. Further in vitro cell cycle study of compounds 4a and 5a revealed MCF-7 cells arrest at G2 /M phase of the cell cycle profile and induction apoptosis at pre-G1 phase. The apoptosis-inducing activity was evidenced by up-regulation of Bax protein together with the downregulation of the expression of Bcl-2 protein. The mechanism of cytotoxic activity of compounds 4a and 5a correlated to its topoisomerase II inhibitory activity. Conclusion: Hybrid molecules containing coumarin and quinolinone moieties represents a scaffold for further optimization to obtain promising anticancer agents.


Author(s):  
Zeinab Abedian ◽  
Niloofar Jenabian ◽  
Ali Akbar Moghadamnia ◽  
Ebrahim Zabihi ◽  
Roghayeh Pourbagher ◽  
...  

Objective/ Background: Cancer is still the most common cause of morbidity in world and new powerful anticancer agents without severe side effects from natural sources is important. Methods: The evaluation of cytotoxicity and apoptosis induction was carried out in MCF-7,HeLa and Saos-2 as cancerous cell lines with different histological origin and human fibroblast served as control normal cell. The cells were treated with different concentrations of chitosan and the cytotoxicity was determined using MTT assay after 24, 48 and 72 h .The mode of death was evaluated by flow cytometry . Results: While both types of chitosan showed significant concentration-dependently cytotoxic effects against the three cancerous cell lines, fibroblast cells showed somehow more compatibility with chitosan. On the other hand, there were no significant differences between LMWC and HMWC cytotoxicity in all cell lines. The flow cytometry results showed the apoptosis pattern of death more in Saos-2 and HeLa while necrosis was more observable with MCF7. Also higher viability with both types of chitosan was seen in fibroblast as normal cells Conclusion: Chitosan shows anticancerous effect against 3 cancerous cell lines, while it is compatible with normal diploid fibroblast cells. Furthermore, it seems that the molecular weight of chitosan does not affect its anticancerous property.


2018 ◽  
Vol 18 (4) ◽  
pp. 573-582 ◽  
Author(s):  
Khaled R.A. Abdellatif ◽  
Mostafa M. Elbadawi ◽  
Mohammed T. Elsaady ◽  
Amer A. Abd El-Hafeez ◽  
Takashi Fujimura ◽  
...  

Background: Some 2-thioxoimidazolidinones have been reported as anti-prostate and anti-breast cancer agents through their inhibitory activity on topoisomerase I that is considered as a potential chemotherapeutic target. Objective: A new series of 3,5-disubstituted-2-thioxoimidazolidinone derivatives 10a-f and their S-methyl analogs 11a-f were designed, synthesized and evaluated for cytotoxicity against human prostate cancer cell line (PC-3), human breast cancer cell line (MCF-7) and non-cancerous human lung fibroblast cell line (WI-38). </P><P> Results and Method: While compounds 10a-f showed a broad range of activities against PC-3 and MCF-7 cell lines (IC50 = 34.0 – 186.9 and 24.6 – 147.5 µM respectively), the S-methyl analogs 11a-f showed (IC50 = 22.7 – 198.5 and 16.9 – 188.2 µM respectively) in comparison with 5-fluorouracil (IC50 = 60.7 and 40.7 µM respectively). 11c (IC50 = 22.7 and 29.2 µM) and 11f (IC50 = 28.7 and 16.9 µM) were the most potent among all compounds against both PC-3 and MCF-7 respectively with no cytotoxicity against WI-38. Conclusion: The newly synthesized compounds showed good activity against PC-3 and MCF-7 cell lines in comparison with 5-fluorouracil. Compounds 11c and 11f bound with human topoisomerase I similar to its known inhibitors and significantly inhibited its DNA relaxation activity in a dose dependent manner which may rationalize their molecular mechanism as cytotoxic agents.


Sign in / Sign up

Export Citation Format

Share Document