scholarly journals Effect of Pb dopant On A.C mechanism of ZnS thin films

2019 ◽  
Vol 12 (25) ◽  
pp. 80-88
Author(s):  
Salma M. Shaban

Vacuum evaporation technique was used to prepare pure and doped ZnS:Pb thin films at10% atomic weight of Pb element onto glass substrates at room temperature for 200 nm thickness. Effect of doping on a.c electrical properties such as, a.c conductivity, real, and imaginary parts of dielectric constant within frequency range (10 KHz - 10 MHz) are measured. The frequency dependence of a.c conductivity is matched with correlated barrier hoping especially at higher frequency. Effect of doping on behavior of a.c mechanism within temperature range 298-473 K was studied.

2018 ◽  
Vol 15 (2) ◽  
pp. 192-197
Author(s):  
Baghdad Science Journal

Thin films of CdTe were prepared with thickness (500, 1000) nm on the glass substrate by vacuum evaporation technique at room temperature then treated different annealing temperatures (373,473,and 573)K for one hour. Results of the Hall Effect and the electrical conductivity of (I-V) characteristics were measured in darkness and light.at different annealing temperature results show that the thin films have ability to manufacture solar cells, and found that the efficient equal to (2.18%) for structure solar cell (Algrid / CdS / CdTe /glass/ Al) and the efficient equal to (1.12%) for structure solar cell (Algrid / CdS / CdTe /Si/ Al) with thick ness of (1000) nm with CdTe thin films at RT.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 76
Author(s):  
Mikhail K. Khodzitsky ◽  
Petr S. Demchenko ◽  
Dmitry V. Zykov ◽  
Anton D. Zaitsev ◽  
Elena S. Makarova ◽  
...  

The terahertz frequency range is promising for solving various practically important problems. However, for the terahertz technology development, there is still a problem with the lack of affordable and effective terahertz devices. One of the main tasks is to search for new materials with high sensitivity to terahertz radiation at room temperature. Bi1−xSbx thin films with various Sb concentrations seem to be suitable for such conditions. In this paper, the terahertz radiation influence onto the properties of thermoelectric Bi1−xSbx 200 nm films was investigated for the first time. The films were obtained by means of thermal evaporation in vacuum. They were affected by terahertz radiation at the frequency of 0.14 terahertz (THz) in the presence of thermal gradient, electric field or without these influences. The temporal dependencies of photoconductivity, temperature difference and voltage drop were measured. The obtained data demonstrate the possibility for practical use of Bi1−xSbx thin films for THz radiation detection. The results of our work promote the usage of these thermoelectric materials, as well as THz radiation detectors based on them, in various areas of modern THz photonics.


2008 ◽  
Author(s):  
Ajit Mahadkar ◽  
Alka Chauhan ◽  
Madhavi Thakurdesai ◽  
Deepak Gaikwad ◽  
P. Predeep ◽  
...  

2011 ◽  
Vol 194-196 ◽  
pp. 2305-2311
Author(s):  
Ying Ge Yang ◽  
Dong Mei Zeng ◽  
Hai Zhou ◽  
Wen Ran Feng ◽  
Shan Lu ◽  
...  

In this study high quality of Al doped ZnO (ZAO) thin films were prepared by RF magnetron sputtering on glass substrates at room temperature in order to study the thickness effect upon their structure, electrical and optical properties. XRD results show that the films are polycrystalline and with strongly preferred (002) orientation perpendicular to substrate surface whatever the thickness is. The crystallite size was calculated by Williamson-Hall method, while it increases as the film thickness increased. The lattice stress is mainly caused by the growth process. Hall measurements revealed electrical parameter very dependent upon thickness when the thickness of ZAO film is lower than 700 nm. The resistivity decreased and the carrier concentration and Hall mobility increases as the film thickness increased. When film thickness becomes larger, only a little change in the above properties was observed. All the films have high transmittance above 90% in visible range. Red shift of the absorption edge was observed as thickness increased. The optical energy bandgap decreased from 3.41eV to 3.30 eV with the increase of film thickness.


2020 ◽  
pp. 44-52
Author(s):  
Ahmed Ahmed S. Abed ◽  
Sattar J. Kasim ◽  
Abbas F. Abbas

In the present study, the microwave heating method was used to prepare cadmium sulfide quantum dots CdSQDs films. CdS nanoparticles size average obtained as (7nm). The morphology, structure and composition of prepared CdSQDs were examined using (FE-SEM), (XRD) and (EDX). Optical properties of CdSQDs thin films formed and deposited onto glass substrates have been studied at room temperature using UV/ Visible spectrophotometer within the wavelength of (300-800nm), and Photoluminescence (PL) spectrum. The optical energy gap (Eg) which estimated using Tauc relation was equal (2.6eV). Prepared CdS nanoparticles thin films are free from cracks, pinholes and have high adhesion to substrate.


MRS Advances ◽  
2019 ◽  
Vol 4 (37) ◽  
pp. 2023-2033
Author(s):  
Barys Korzun ◽  
Marin Rusu ◽  
Thomas Dittrich ◽  
Anatoly Galyas ◽  
Andrey Gavrilenko

ABSTRACTThin films of haycockite Cu4Fe5S8 on glass substrates were deposited by flash evaporation technique from powders of this compound. The composition of thin films correspond to the atomic content of Cu, Fe, and S of 24.13, 27.90, and 47.97 at.% with the Cu/ Fe and S/ (Cu + Fe) atomic ratios of 0.87 and 0.92 respectively, whereas the corresponding theoretical values for this material amount to 0.80 and 0.89. The as-prepared thin films of haycockite consist of a set of separate fractions of approximately identical areas of about 400 - 600 μm2. It can be assumed that this structure evolved during cooling down of thin films since it completely covers the surface of thin films. A small inclusion of a second phase with the chemical composition close to talnakhite Cu9Fe8S16 is also observed. Haycockite Cu4Fe5S8 is found to be a direct gap semiconductor with the energy band gap Eg equal to 1.26 eV as determined using both transmission and surface photovoltage methods.


2009 ◽  
Vol 7 (4) ◽  
pp. 769-773
Author(s):  
Vinodini Shaktawat ◽  
Dinesh Patidar ◽  
Kananbala Sharma ◽  
Narendra Saxena ◽  
Thansewar. Sharma

AbstractPure Polyaniline (EB) and Polyaniline doped with different protonic acids (ESs) were chemically synthesized using ammonium peroxydisulphate (APS) as an oxidant. Junctions have been prepared by evaporating chalcogenide materials (ZnSe, CdSe) on conducting polyaniline (EB & ESs) pellets using a vacuum evaporation technique. I–V characteristics of junctions have been studied at room temperature using the Keithley electrometer 6517A. I–V measurements show the rectification effect. A junction of ES[PO43−] may be preferred over the other junctions due to its low ideality factor and maximum rectification ratio.


Sign in / Sign up

Export Citation Format

Share Document