scholarly journals Unusual Polymicrobial Wound Infections In Healthy Patient After Cesarean Sectio

2020 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Henny Tannady Tan ◽  
Irene Maria Elena ◽  
Ade Dharmawan ◽  
Nicolas Layanto

Cesarean delivery often complicated by surgical site infection, wound infection and endometritis. No study mention Multidrug Resistant Klebsiella pneumonia and Acinetobacter lwofii were isolated.Here we report a rare case of polymicrobial wound infections in healthy patient after Cesarean Sectio caused by Pseudomonas aeruginosa, Multidrug Resistant Klebsiella pneumonia and Acinetobacter iwofii. A 30-year-old woman at 37 weeks gestation (G1P0A0) presented to our hospital for cesarean sectio due to oligohydroamnios and malpresentation. She came to us on the eleventh post-delivery day with discharge from her surgical wound. Intraoperative cultures revealed Pseudomonas aeruginosa, Multidrug Resistant Klebsiella pneumonia and Acinetobacter lwofii.The greatest contribution to risk for surgical site infection was associated with maternal obesity and hypertensive disorder, but she has no risk factor.The polymicrobial combination of our patient’s is unique from previously described studies, in this case all were Gram negative bacteria (Pseudomonas aeruginosa, Multidrug Resistant Klebsiella pneumonia and Acinetobacter lwofii).

Author(s):  
V Singh ◽  
A B Khyriem, W V Lyngdoh ◽  
C J Lyngdoh

Objectives - Surgical site infections (SSI) has turn out to be a major problem even in hospital with most modern facilities and standard protocols of pre -operative preparation and antibiotic prophylaxis. Objective of this study is to know the prevalence of surgical site infection among the postoperative patients and to identify the relationship between SSI and etiological pathogens along with their antimicrobial susceptibility at North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), Shillong. Methods - A retrospective case study conducted at NEIGRIHMS, among patients admitted to the surgical departments during the period between January 1st and December 31st 2016. Swabs from the surgical sites were collected under sterile conditions and standard bacteriological tests were performed for identification and appropriate statistical methods were employed to look for association between SSI and etiological pathogens. Results - Out of the 1284 samples included in the study, 192 samples showed evidence of SSI yielding an infection rate of 14.9%. The most commonly isolated bacteria were: Escherichia coli, Acinetobacter baumanii and Staphylococcus aureus, of the gram negative isolates 6.2% were multidrug resistant of which 19% were carbapenem resistant. Conclusion - SSI with multiple drug resistance strains and polymicrobial etiology reflects therapeutic failure. The outcome of the SSI surveillance in our hospital revealed that in order to decrease the incidence of SSI we would have to: a) incorporate a proper antibiotic stewardship  b) conduct periodic surveillance to keep a check on SSI d) educate medical staffs regarding the prevention of surgical site infection.


2021 ◽  
Vol 6 (2) ◽  
pp. 75
Author(s):  
Utami Purwaningsih ◽  
Kris Linggardini

Surgical Site Infection is infections that occur after surgery. Control of the incidence of nosocomial infection is part of the parameters of good health services at the hospital. One in 10 mothers who give birth by cesarean has an infection. The level of patient knowledge about how to care for wounds is an important factor in decreasing the incidence of wound infection in the surgical area in SC patients. Objective: knowing the relationship between levels of knowledge of post-operative SC patients about wound care and the incidence of surgical site wound infections. Method: The design used descriptive correlative and cross sectional approach. The sample were 76 respondents. The data were collected in December 2019 by using a knowledge level questionnaire and a form of signs of infection from Morison 2004. Data analysis using chi square).  The results showed that there was a relationship between knowledge and the incidence of infection in the area of ​​operation (p value 0.001).  Keywords: nosocomial, surgical site infection (SSI), section caesarea (SC) 


2021 ◽  
Vol 3 (1) ◽  
pp. 20-26
Author(s):  
Suliman Mansour Albalawi ◽  
Abdulrahman K. Al-Asmari ◽  
Syed Rafatullah ◽  
Maysa Mahfoud

  The emergence of antibiotic resistant microorganism strains has become a critical concern in the treatment of infectious diseases and makes the search of an alternative therapy a must. The study was designed to evaluate the in vitro antimicrobial activities of the Moringa peregrina (MP) leave (MPL) and seed (MPS) extracts. Antimicrobial assays were performed using a microplate growth inhibition assay against 11 multidrug-resistant (MDR) strains. Following qualitative analysis, dose-response assays were performed using the MTT colorimetric assay. The results showed a strong correlation between the MPL and MPS extract concentration and growth inhibition (P<0.001). MP extract revealed a remarkable antimicrobial effect and inhibited the growth and survival of MDR pathogens which include Escherichia coli; Pseudomonas aeruginosa; Klebsiella pneumonia; Acinetobacter baumannii; Staphylococcus aureus between (88.6-94.7 %) and between (62.3- 88.7%) against Candida Kefyer; Candida parapsilosis; Candida albicans; Candida glabrata; Aspergillus flavus and Fusarium oxysporum. MIC50 ranging from ≤6.25 to 25 mg/mL. Acinetobacter baumannii and Pseudomonas aeruginosa were the most susceptible to MP extracts (MIC50 < 6.25 mg/mL). These results support the use of MP in Arab traditional medicine as natural antimicrobial agents. Additionally, the use of such naturally occurring adjuvant derived from medicinal plants can be used as an adjuvant with synthetic antibiotics to combat bacterial resistance and to enhance the antibacterial potential. Further studies are recommended on isolation and purification of novel antimicrobial molecules to treat the infections caused by microbes.  


2021 ◽  
Vol 99 (1) ◽  
pp. 115220
Author(s):  
Maristela P. Freire ◽  
Alice T. Wan Song ◽  
Isabel Cristina Vilela Oshiro ◽  
Wellington Andraus ◽  
Luiz Augusto Carneiro D'Albuquerque ◽  
...  

2019 ◽  
Vol 40 (6) ◽  
pp. 838-845 ◽  
Author(s):  
Ojas Jyoti Singh Pujji ◽  
Kiran Kishor Nakarmi ◽  
Basudha Shrestha ◽  
Shankar Man Rai ◽  
Steven Leonard Alexander Jeffery

AbstractIn Nepal, burn is the third most common injury after falls and road traffic accidents. Infection is the leading cause of mortality in burn injury. A profile exploring predominant flora and antimicrobial sensitivity is important to facilitate treatment ahead of microbiology results and to aid prevention of multidrug-resistant organisms. The aim of this study was to document epidemiological and bacteriological data of burn wound infections at a tertiary level burns center in Nepal. Samples were collected from January 2017 to May 2017, over a period of 5 months. Patient notes were referred to and information regarding baseline characteristics and burn wound infection data was collected. A total of 76 patients were included in the study during the 5-month period, which resulted in 113 samples being included for review. Females were injured most with burns 70% (n = 53) compared with males 30% (n = 23). Only 6 (8%) of 77 patients lived locally in Kathmandu. The average distance traveled by patients was 233 km (median 208, range 0–765, SD 181). Average TBSA% of burn was 22% (median 20, range 3–50, SD 12). Gram-negative organisms predominated, with Acinetobacter spp. in 42 cases (55%), Pseudomonas aeruginosa in 26 cases (34%), and Enterobacter spp. in 16 cases (21%). Colistin, polymyxin B, and tigecycline were found to be most sensitive covering 108, 98, and 94 organisms. Gram-negative bacteria colonized the majority of burn wounds. Colistin, polymyxin B, and tigecycline were the most sensitive to gram-negative bacteria. Gram-positive Staphylococcus aureus was sensitive most to vancomycin and tigecycline.


1972 ◽  
Vol 70 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Mair E. M. Thomas ◽  
Elizabeth Piper ◽  
Isobel M. Maurer

SUMMARYThis paper describes a search for Gram-negative bacteria in an operating theatre and the steps taken to reduce the level of environmental contamination.A high rate of infection in clean wounds prompted a bacteriological survey. Potential sources of infection found, and the measures employed are described in the hope that others may be encouraged to examine familiar equipment critically and to improve hygiene even in old premises.The choice, design, use and care of cleaning and sterilizing equipment were open to criticism. In particular, a currently popular floor-scrubbing machine provided a breeding ground for Pseudomonas aeruginosa and was distributing it in the theatre environment.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Jeffrey A. Melvin ◽  
Jordan R. Gaston ◽  
Shawn N. Phillips ◽  
Michael J. Springer ◽  
Christopher W. Marshall ◽  
...  

ABSTRACT How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance. Microorganisms exist in a diverse ecosystem and have evolved many different mechanisms for sensing and influencing the polymicrobial environment around them, utilizing both diffusible and contact-dependent signals. Contact-dependent growth inhibition (CDI) is one such communication system employed by Gram-negative bacteria. In addition to CDI mediation of growth inhibition, recent studies have demonstrated CDI-mediated control of communal behaviors such as biofilm formation. We postulated that CDI may therefore play an active role in host-pathogen interactions, allowing invading strains to establish themselves at polymicrobial mucosal interfaces through competitive interactions while simultaneously facilitating pathogenic capabilities via CDI-mediated signaling. Here, we show that Pseudomonas aeruginosa produces two CDI systems capable of mediating competition under conditions of growth on a surface or in liquid. Furthermore, we demonstrated a novel role for these systems in contributing to virulence in acute infection models, likely via posttranscriptional regulation of beneficial behaviors. While we did not observe any role for the P. aeruginosa CDI systems in biofilm biogenesis, we did identify for the first time robust CDI-mediated competition during interaction with a mammalian host using a model of chronic respiratory tract infection, as well as evidence that CDI expression is maintained in chronic lung infections. These findings reveal a previously unappreciated role for CDI in host-pathogen interactions and emphasize their importance during infection. IMPORTANCE How bacteria compete and communicate with each other is an increasingly recognized aspect of microbial pathogenesis with a major impact on disease outcomes. Gram-negative bacteria have recently been shown to employ a contact-dependent toxin-antitoxin system to achieve both competition and regulation of their physiology. Here, we show that this system is vital for virulence in acute infection as well as for establishment of chronic infection in the multidrug-resistant pathogen Pseudomonas aeruginosa. Greater understanding of the mechanisms underlying bacterial virulence and infection is important for the development of effective therapeutics in the era of increasing antimicrobial resistance.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Salu Rai ◽  
Uday Narayan Yadav ◽  
Narayan Dutt Pant ◽  
Jaya Krishna Yakha ◽  
Prem Prasad Tripathi ◽  
...  

In Nepal, little is known about the microbiological profile of wound infections in children and their antimicrobial susceptibility patterns. Total of 450 pus/wound swab samples collected were cultured using standard microbiological techniques and the colonies grown were identified with the help of biochemical tests. The antimicrobial susceptibility testing was performed by Kirby-Bauer disc diffusion technique. Methicillin-resistantStaphylococcus aureusisolates were detected by using cefoxitin disc and confirmed by determining minimum inhibitory concentrations (MIC) of oxacillin. 264 (59%) samples were culture positive. The highest incidence of bacterial infections was noted in the age group of less than 1 year (76%). Out of 264 growth positive samples, Gram-positive bacteria were isolated from 162 (61%) samples and Gram-negative bacteria were found in 102 (39%) samples.Staphylococcus aureus(99%) was the predominant Gram-positive bacteria isolated andPseudomonas aeruginosa(44%) was predominant Gram-negative bacteria. About 19% ofS. aureusisolates were found to be methicillin-resistant MIC of oxacillin ranging from 4 μg/mL to 128 μg/mL. Among the children of Nepal, those of age less than 1 year were at higher risk of wound infections by bacteria.Staphylococcus aureusfollowed byPseudomonas aeruginosawere the most common bacteria causing wound infections in children.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Elsayed M. AbouElleef ◽  
Mowafak M. Mahrouka ◽  
Sherine E. Salem

The nano-CuCl2.2H2O salt was prepared by the ball milling method. The association parameters for bulk and nano-CuCl2 salts in H2O are estimated at different temperatures using the conductivity method by applying the Fuoss–Shedlovsky equation and it was higher for nano-CuCl2 than bulk CuCl2 salt. The interaction between the cation (Cu2+) and ligand (ceftriaxone) in H2O was determined also by the conductometric method. Two stoichiometric complexes 1/2 and 1/1 (M/L) are estimated and follow the order Kf (1/1) > Kf (1 : 2) and ∆Gf (1/1) > ∆Gf (1/2) for (M : L) (in negative values) indicate the favorable of formation of (1/1) complex compared to the (1 : 2) complex. The Gibbs free energies change was increased in negative signs with increasing the temperature. The antimicrobial activities of CFT, bulk Cu-CFT complex, and nano-Cu-CFT complex were studied on LB agar by the disc diffusion technique against clinical isolates of gram-negative bacteria (Klebsiella pneumonia and Pseudomonas aeruginosa) and Fungi (Candida albicans). It was observed that (CFT) has a higher zone of inhibition and antibacterial activity than that of bulk and nano-Cu-CFT complexes in Klebsiella pneumonia and Pseudomonas aeruginosa (gram-negative bacteria). The nano-Cu-CFT complex showed a higher clear zone of inhibition and antifungal activity against candida than bulk Cu-CFT complex while the absence of the inhibition zone in CFT, so nano-Cu-CFT complex, can be used as an antifungal drug.


2020 ◽  
Author(s):  
Tao Chen ◽  
Ye Xu ◽  
Wenya Xu ◽  
Wenli Liao ◽  
Chunquan Xu ◽  
...  

Abstract Background: Pseudomonas aeruginosa is the most common Gram-negative pathogen responsible for chronic wound infections, such as diabetic foot infections, and further exacerbates the treatment options and cost of such conditions. Hypertonic glucose, a commonly used prolotherapy solution, can accelerate the proliferation of granulation tissue and improve microcirculation in wounds. However, the action of hypertonic glucose on bacterial pathogens that infect wounds is unclear. In this study, we investigated the inhibitory effects of hypertonic glucose on multidrug-resistant P. aeruginosa strains isolated from diabetic foot infections. Hypertonic glucose represents a novel approach to control chronic wound infections caused by P. aeruginosa. Results: Four multidrug-resistant P. aeruginosa clinical strains isolated from diabetic foot ulcers from a tertiary hospital in China and the reference P. aeruginosa PAO1 strain were studied. Hypertonic glucose significantly inhibited the growth, biofilm formation, and swimming motility of P. aeruginosa clinical strains and PAO1. Furthermore, hypertonic glucose significantly reduced the production of pyocyanin and elastase virulence factors in P. aeruginosa. The expression of major quorum sensing genes (lasI, lasR, rhlI, and rhlR) in P. aeruginosa were all downregulated in response to hypertonic glucose treatment. In a Galleria mellonella larvae infection model, the administration of hypertonic glucose was shown to increase the survival rates of larvae infected by P. aeruginosa strains (3/5).Conclusions: Hypertonic glucose inhibited the growth, biofilm formation, and swimming motility of P. aeruginosa, as well as reduced the production of virulence factors and quorum sensing gene expression. Further studies that investigate hypertonic glucose therapy should be considered in treating chronic wound infections.


Sign in / Sign up

Export Citation Format

Share Document