scholarly journals Gabbroides of Peterman island (West Antarctica). First information on geochemistry

2019 ◽  
Vol 65 (4) ◽  
pp. 449-461
Author(s):  
G. V. Artemenko ◽  
V. I. Ganotskiy

Peterman Island is located in the archipelago of the Wilhelm Islands on the west coast of the Antarctic Peninsula (Graham Land). It is composed of gabbroids and granitoids of the Andean complex, which formed almost 100 million years later than the volcanic group of the Antarctic Peninsula. To clarify their genesis and geodynamic conditions of formation, gabbroids of the Andean complex are of particular interest, since the petrological models of their formation are well developed. Gabbroid intrusions comprise small bodies that are widespread along the Antarctic Peninsula. Among them stand out olivine gabbros, normal gabbros, norites and hornblende gabbros. Also are found small bodies of melanogabbro-pegmatites and intramagmatic dykes, that are associated with the manifestations of ore mineralization of magnetite, ilmenite and sulfides. For this reason, they are of interest for both the minerals search and for solving the question of their genesis. To this end, we performed geochemical studies of Peterman Island gabbroids. Gabbroids of Peterman Island are represented by amphibolized medium-grained gabbro with hypidiomorphic texture. Among them, xenoliths of thinly stratified gabbroids 3 × 8 m in size were found, which are characteristic of stratified intrusions, for example, Stillwater, Bushveld, etc. Gabbroids of Peterman Island have low content of silica and potassium and according to the petrochemical characteristics correspond to peridotite gabbro. They have low contents of Cr, Ni, V and high strength lithophilic Y and Nb elements. Gabbroids have been crystallized from basic magma, differentiated in the intermediate crustal magma chambers. Positive anomalies of Sr, Eu, and Ti in the multielement diagrams and positive anomalies of europium Eu/Eu* suggest the accumulation of plagioclase and apparently, ilmenite in the magmatic chamber. The primary magma source for gabbroids was probably the primitive mantle (PM). Gabbroids are contaminated with crustal matter. This contamination is probably due to their regressive metamorphism, caused by the introduction of later intrusions of Andean complex granitoid. Finely layered xenolithic gabbroids do not differ from other homogeneous gabbros of Peterman Island in terms of chemical composition.This xenolith most likely represents a part (fragment) of the wall of the magma chamber in which the differentiation of the initial main magma took place. According to the obtained geochemical data, a wide range of compositions of the Andean complex gabbroids formed as a result of crystallization differentiation of magma melted from rocks of the composition of the primitive mantle (PM) in crustal magma chambers, which also resulted in the accumulation of ore elements — V, Co, and Cu in the residual magmatic melts.

Author(s):  
R. J. Pankhurst ◽  
M. J. Hole ◽  
M. Brook

ABSTRACTThe genesis of subduction-related magmas in the Andean region of South America and the Antarctic Peninsula is considered in relation to the Palaeozoic to Cenozoic granitoids belts which are thought to parallel palaeo-coastlines. Their Sr-Nd isotope systematics show a wide range of initial compositions (87Sr/86Sr0 0·7038 to >0·710; εNd, +4 to –10) requiring material input from both depleted mantle and continental crust. In local transects there are consistent trends with time of emplacement, from enriched (crustal) to depleted (mantle) sources, regardless of the sense of migration of magmatism (towards or away from the continent). These trends represent mixing between mantle-derived material and anatectic melts of the lower crust: in each case the crustal end-member reflects the age and isotopic composition of the local deep crustal basement (Precambrian in the easternmost Andes, Palaeozoic in the W and in the Antarctic Peninsula). The depleted end-member could be derived by melting within the subducted oceanic crust, the overlying mantle or previously crystallised mafic underplating. One of the most important factors controlling the mixing process is the angle of subduction, resulting in magma generation under variable tectonic conditions.


1995 ◽  
Vol 7 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Eugene W. Domack ◽  
Scott E. Ishman ◽  
Andrew B. Stein ◽  
Charles E. McClennen ◽  
A.J. Timothy Jull

Marine sediment cores were obtained from in front of the Müller Ice Shelf in Lallemand Fjord, Antarctic Peninsula in the austral summer of 1990–91. Sedimentological and geochemical data from these cores document a warm period that preceded the advance of the Müller Ice Shelf into Lallemand Fjord. The advance of the ice shelf is inferred from a reduction in the total organic carbon content and an increase in well-sorted, aeolian, sand in cores proximal to the present calving line. This sedimentological change is paralleled by a change in the foraminiferal assemblages within the cores. Advance of the ice shelf is indicated by a shift from assemblages dominated by calcareous benthic and planktonic forms to those dominated by agglutinated forms. A 14C chronology for the cores indicates that the advance of the Müller Ice Shelf took place c. 400 years ago, coincident with glacier advances in other high southern latitude sites during the onset of the Little Ice Age. Ice core evidence, however, documents this period as one of warmer temperatures for the Antarctic Peninsula. We suggest that the ice shelf advance was linked to the exclusion of circumpolar deep water from the fjord. This contributed to increased mass balance of the ice shelf system by preventing the rapid undermelt that is today associated with warm circumpolar deep water within the fjord. We also document the recent retreat of the calving line of the Müller Ice Shelf that is apparently in response to a recent (four decade long) warming trend along the western side of the Antarctic Peninsula.


2006 ◽  
Vol 143 (6) ◽  
pp. 777-796 ◽  
Author(s):  
M. A. HUNTER ◽  
T. R. RILEY ◽  
D. J. CANTRILL ◽  
M. J. FLOWERDEW ◽  
I. L. MILLAR

The Jurassic Mount Poster Formation of eastern Ellsworth Land, southern Antarctic Peninsula, comprises silicic ignimbrites related to intracontinental rifting of Gondwana. The identification of less voluminous basaltic and sedimentary facies marginal to the silicic deposits has led to a reclassification of the volcanic units into the Ellsworth Land Volcanic Group. This is formally subdivided into two formations: the Mount Poster Formation (silicic ignimbrites), and the Sweeney Formation (basaltic and sedimentary facies). The Mount Poster Formation rhyolites are an intracaldera sequence greater than 1 km in thickness. The basaltic and sedimentary facies of the Sweeney Formation are consistent with deposition in a terrestrial setting into, or close to, water. The geochemistry of the Mount Poster Formation is consistent with derivation of the intracaldera rhyolites from a long-lived, upper crustal magma chamber. The basalts of the Sweeney Formation are intermediate between asthenosphere- and lithosphere-derived magmas, with little or no subduction-modified component. The basalt could represent a rare erupted part of the basaltic underplate that acted as the heat source for local generation of the rhyolites. U–Pb ion microprobe zircon geochronology of samples from the Mount Poster Formation yield an average eruption age of 183.4±1.4 Ma. Analysis of detrital zircons from a Sweeney Formation sandstone suggest a maximum age of deposition of 183±4 Ma and the two formations are considered coeval. In addition, these ages are coincident with eruption of the Karoo-Ferrar Igneous Province in southern Africa and East Antarctica. Our interpretation of the Ellsworth Land Volcanic Group is consistent with the model that the Jurassic volcanism of Patagonia and the Antarctic Peninsula took place in response to intracontinental extension driven by arrival of a plume in that area.


2003 ◽  
Vol 40 (9) ◽  
pp. 1219-1237 ◽  
Author(s):  
H A Sandeman ◽  
B L Cousens ◽  
C J Hemmingway

The Paleoproterozoic Hurwitz Group of the western Churchill Province is an erosional remnant of an areally extensive, predominantly shallow-water intracratonic basin comprised of four major sequences. Sequence 2, forming the central part of the stratigraphy, contains the Ameto Formation, a sequence of pillowed and massive basaltic rocks and associated gabbro sills termed the Happotiyik Member that are interlayered with subordinate deep-water mudstones, siltstones, and diamictites. Whole-rock geochemical data for the mafic rocks reveals a suite of homogeneous tholeiitic basalts with affinities to both continental and volcanic-arc tholeiites. Compatible trace elements and large-ion lithophile elements exhibit scattered behavior, whereas all high field strength elements show a systematic increase with Zr. The rocks are large-ion lithophile and light rare-earth element enriched, and have parallel primitive mantle normalized extended trace element patterns with prominent negative Nb, Ta, and Ti anomalies. εNd(t=2200 Ma) values for the rocks range from 0.0 to +0.8. The data indicate that the parental magmas were derived from a heterogeneous, predominantly depleted mantle source that included a minor metasomatically enriched component. Contamination by Neoarchean, juvenile silicic upper crust during ascent was minimal. We envisage that the rocks of the Happotiyik Member were generated from sub-continental lithospheric mantle that was stabilized immediately after formation of the ca. 2680 Ma, Neoarchean Central Hearne sub-domain. This enrichment occurred via metasomatic infiltration of subduction-derived fluids and melts into the overlying lithosphere. A wide range of Paleoproterozoic intra-continental mafic rocks in the western Churchill Province exhibit comparable geochemical and isotopic signatures that suggest an origin in the lithospheric mantle. These observations imply that the Hearne sub-continental lithospheric mantle has endured since the Neoarchean and likely persists today.


The Antarctic Peninsula is a good place for studies that take advantage of its wide range of latitude. Other worthwhile investigations are those that set in context the glacier/climate relationships and provide a framework of basic glaciological data. In order to speed reconnaissance mapping a series of seven 1:250 000 map sheets was published which used satellite imagery as the only source for planimetric detail. In preparation for intermediate depth ice core drilling for glaciological and palaeoclimatic investigations a wide-ranging programme of radio echo sounding has been pursued since 1963; flight tracks now total 80000 km. Experimental results are presented for an area at the base of the peninsula between latitudes 73° S and 80° S. Track plotting was controlled by relating observed subglacial topographic features with the surface expression of the same features revealed in a Landsat image mosaic. Thus navigation was not subject to the cumulative position errors generally encountered on long flights far from fixed points (nunataks). Redefinition of the earlier speculative boundary of the inland ice sheet added 38000 km2 to the land area of Antarctica while reducing the area of Ronne Ice Shelf by 11%. An unmapped nunatak was found 187 km from the nearest known outcrop. Three major inlets contained the thickest floating ice ever measured. Floating ice 1860 m thick was identified at a point only 17 km from the Ellsworth Mountains; thus within 60 km of the highest mountain in Antarctica (5140 m) there is a trench reaching 1600 m below sea level. Subglacially, there is potentially a channel well below sea level that connects the Bellingshausen Sea with the Weddell Sea. A radio echo sounder was adapted to measure the surface velocity of glaciers by reference to the spatial fading pattern of the bottom echo. Checks on Fleming Glacier with optical survey instruments showed that the true rate of movement was 44% faster than indicated by the fading pattern. It was concluded that the sounder had measured surface velocity with reference to a reflecting horizon which itself was deforming or sliding over the glacier bed. Experiments on ice shelves have been used to extend the flow law of ice to stresses lower than can be studied in the laboratory. At least down to the lowest stress considered (0.04 MN m-2) the results supported a power law with a stress exponent of 3 as found in the laboratory for higher stresses. Ultra-clean sampling techniques were developed for detecting extremely low levels of impurities in snow (3 x 10 -14 g g -1 ). Thus DDT concentrations were found to be 40-100 times smaller than earlier reported for snow from central Antarctica. An extensive reconnaissance programme of 10 m ice core drilling has been pursued with the object of studying relationships between oxygen isotope fractionation and ice and air temperatures. The ice, water, and energy balances of two representative local glaciers have been studied as a contribution to the International Hydrological Decade.


Author(s):  
A. G. Korchunov ◽  
E. M. Medvedeva ◽  
E. M. Golubchik

The modern construction industry widely uses reinforced concrete structures, where high-strength prestressing strands are used. Key parameters determining strength and relaxation resistance are a steel microstructure and internal stresses. The aim of the work was a computer research of a stage-by-stage formation of internal stresses during production of prestressing strands of structure 1х7(1+6), 12.5 mm diameter, 1770 MPa strength grade, made of pearlitic steel, as well as study of various modes of mechanical and thermal treatment (MTT) influence on their distribution. To study the effect of every strand manufacturing operation on internal stresses of its wires, the authors developed three models: stranding and reducing a 7-wire strand; straightening of a laid strand, stranding and MTT of a 7-wire strand. It was shown that absolute values of residual stresses and their distribution in a wire used for strands of a specified structure significantly influence performance properties of strands. The use of MTT makes it possible to control in a wide range a redistribution of residual stresses in steel resulting from drawing and strand laying processes. It was established that during drawing of up to 80% degree, compressive stresses of 1100-1200 MPa degree are generated in the central layers of wire. The residual stresses on the wire surface accounted for 450-500 MPa and were tension in nature. The tension within a range of 70 kN to 82 kN combined with a temperature range of 360-380°С contributes to a two-fold decrease in residual stresses both in the central and surface layers of wire. When increasing temperature up to 400°С and maintaining the tension, it is possible to achieve maximum balance of residual stresses. Stranding stresses, whose high values entail failure of lay length and geometry of the studied strand may be fully eliminated only at tension of 82 kN and temperature of 400°С. Otherwise, stranding stresses result in opening of strands.


Alloy Digest ◽  
1995 ◽  
Vol 44 (6) ◽  

Abstract SP 700 is a high strength, beta-rich alpha-beta titanium alloy. It was developed with the following attributes: (1) excellent hot- and cold-workability; (2) enhanced hardenability with a wide range of mechanical properties that can be obtained by heat treatment; and (3) superior superplastic behavior at low temperature (around 1050 K). This datasheet provides information on composition, physical properties, microstructure, elasticity, tensile properties, and bend strength. It also includes information on high temperature performance as well as heat treating. Filing Code: TI-107. Producer or source: NKK Corporation.


Alloy Digest ◽  
1978 ◽  
Vol 27 (7) ◽  

Abstract ALMAR 300 Alloy is a vacuum-melted ultra-high-strength steel. The annealed structure of this alloy is essentially a carbon-free, iron-nickel martensite (a relatively soft Rockwell C 28) that can be strengthened by cold working and elevated-temperature (900-950 F) age hardening to useful yield strengths as high as 300,000 psi. The unique properties of this alloy make it suitable for a wide range of section sizes. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-349. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1975 ◽  
Vol 24 (5) ◽  

Abstract USS TENELON is a completely austenitic, nickel-free stainless steel with exceptionally high strength which is retained at elevated temperatures. It has excellent corrosion resistance in atmospheric and mild acid exposures and maintains nonmagnetic characteristics even when 60% cold reduced. It also has good stress-rupture and creep properties in the range 1200-1500 F. It has a wide range of applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-311. Producer or source: United States Steel Corporation.


Sign in / Sign up

Export Citation Format

Share Document