THE EFFECT OF VARIATION OF VOLUME SOLUTION OF WULUH STRAWELL AND KEY ORANGE SITE ON PH VALUE, ELECTRICAL PROPERTIES AND CHANGES IN ELECTRODE MASS

2021 ◽  
Vol 5 (2) ◽  
pp. 7
Author(s):  
Zafira Amalia Nasution ◽  
Ratni Sirait ◽  
Abdul Halim Daulay
2015 ◽  
Vol 1109 ◽  
pp. 253-256 ◽  
Author(s):  
M.A. Farehanim ◽  
U. Hashim ◽  
Norhayati Soin ◽  
A.H. Azman ◽  
S. Norhafiezah ◽  
...  

The electrical performances of silicon dioxide-based Interdigitated electrodes (IDEs) as biosensor were developed. The IDEs was made up by two individually addressable Interdigitated comb-like finger structure have frequently been suggested as a biosensor which promises higher sensitivity compared to conventional parallel electrodes. The purpose of this paper was to investigate the capacitance test and impedance test to taken with various pH solution to observe the response of the sensor with different pH values. Purchased pH buffer solutions which varied from pH2 to pH10 are dropped on the microelectrode and the effect on it is investigated for the application in pH measurement. This research has proven that increase in pH value from acidic to alkaline is proportional with capacitance. The measured values of capacitance with respect to each pH concentrations applied during the measurements were repeatable and reproducible.


2008 ◽  
Vol 368-372 ◽  
pp. 103-105
Author(s):  
Zhi Bin Tian ◽  
Xiao Hui Wang ◽  
Ji Li ◽  
Wei Zhao ◽  
Long Tu Li

A citrate method to synthesize 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 nano-powder was studied. The stable gel was obtained by the control of the pH value and temperature of the precursor solution. The BNBT nano-powder was produced after calcining the xerogel at 600°C~800°C. The average grain size of the powder calcined at 700°C for 3 h is 50 nm, and the grain size of the ceramic sintered at 1080°C is 0.7 μm. The sintering temperature used is 100°C lower than the BNBT ceramic prepared by traditional method, but the electrical properties were comparable. In addition, it was found that the ball-milling process has important effect on the morphology of the ceramics and the orientation crystals were eliminated due to the disintegration of agglomerates during milling.


2018 ◽  
Vol 33 (2) ◽  
pp. 309-316
Author(s):  
Ahmed A. Al-Dulaimi ◽  
W.D. Wanrosli ◽  
Lway Faisal Abdulrazak ◽  
M. Husham

AbstractThe preparation of conductive polypyrrole (PPy) nanocomposite with cellulose nanocrystals (CNC) was carried out by situ polymerization method. The new water dispersible sample (PPy-CNC) was deposited as a thin film on the paper sheet substrate as a conductive paper. The images of field emission scanning electron microscopy (FESEM) clearly shw the morphological modulation and the uniformity of the PPy-CNC sample. The electrical properties of conductive paper were studied with various acid doping values. The results show increase in the electrical properties along with the decrease of pH value. Cyclic voltammetry (CV) test was used to examine the stability of redox properties of the neat sample before the doping process. The mechanical properties such as tensile index and elongation at break shows slight decline with decreasing pH. However, elongation at break results for 0.65 pH sample shows different respond to pH value.


2021 ◽  
Vol 03 (03) ◽  
pp. 92-102
Author(s):  
Bilal Y. TAHER ◽  
Ahmad S. AHMAD

CuAlS2 thin films have been prepared on glass substrates by Chemical bath deposition (CBD) technique at a substrate temperature (Ts) 75C, pH value 10.5.The Effect of three different molar concentration (0.05, 0.025, 0.1), (0.075, 0.0375, 0.15), and (0.1, 0.05, 0.2) M of precursors of (CuSO4.5H2O, Al2(SO4)3.16H2O, and (NH2)2CS), respectively on the structural, optical and electrical properties of deposit thin films was studied. The X-ray diffraction (XRD) patterns showed that the films have an amorphous structure with simple enhancement in the structure of the films with the higher molar concentration. Field emission scanning electron microscopy (FESEM) analysis of thin films showed that the deposited films were a good surface morphology, homogenous and uniform spherical nanoparticles over the substrate surface with very little agglomerated particles with average grain size in the range (45 to 72 nm) increase with increasing molar concentration of precursors. Atomic force microscopy (AFM) showed the topography of deposited films has nanoparticles with structures like conical and lobes shape, with the average grain sizes, root mean square (rms) roughness, and surface roughness increase with increasing molar concentration of precursors. The optical analysis by UV-Vis Spectrophotometer showed high absorption in the ultraviolet region, with absorption edge and direct energy gaps (3.5 to 4eV) variedat different molar concentrations of precursors. The electrical results from Hall effect measurements showed that the values of resistivity, conductivity, mobility, and carrier concentration were varied in range (0.046 to 0.594ohm.cm), (1.86 to 21.7(ohm.cm)-1), (301to 1510 cm2/V.S), and (3.29×1016 to 1.46×1017 cm-3), respectively .Also,n-type conductivity was investigated for all prepared film sat different molar concentration of precursors. The obtained results of the prepared CuAlS2 thin films can be suitable in many optoelectronics applications.


AIMS Energy ◽  
2017 ◽  
Vol 5 (2) ◽  
pp. 258-267 ◽  
Author(s):  
Irén Juhász Junger ◽  
◽  
Sarah Vanessa Homburg ◽  
Hubert Meissner ◽  
Thomas Grethe ◽  
...  

2020 ◽  
Vol 46 (7) ◽  
pp. 8700-8705
Author(s):  
Kailong Wei ◽  
Helei Dong ◽  
Qiulin Tan ◽  
Wenfang Kang ◽  
Shihui Yu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1914
Author(s):  
Rúben F. Santos ◽  
Bruno M. C. Oliveira ◽  
Alexandre Chícharo ◽  
Pedro Alpuim ◽  
Paulo J. Ferreira ◽  
...  

The use of Ta/TaN barrier bilayer systems in electronic applications has been ubiquitous over the last decade. Alternative materials such as Co-W or Ru-W alloys have gathered interest as possible replacements due to their conjugation of favourable electrical properties and barrier layer efficiency at reduced thicknesses while enabling seedless Cu electroplating. The microstructure, morphology, and electrical properties of Cu films directly electrodeposited onto Co-W or Ru-W are important to assess, concomitant with their ability to withstand the electroplating baths/conditions. This work investigates the effects of the current application method and pH value of the electroplating solution on the electrocrystallisation behaviour of Cu deposited onto a Co-W barrier layer. The film structure, morphology, and chemical composition were studied by X-ray diffraction, scanning electron microscopy and atomic force microscopy, as well as photoelectron spectroscopy. The results show that the electrolyte solution at pH 1.8 is incapable of creating a compact Cu film over the Co-W layer in either pulsed or direct-current modes. At higher pH, a continuous film is formed. A mechanism is proposed for the nucleation and growth of Cu on Co-W, where a balance between Cu nucleation, growth, and preferential Co dissolution dictates the substrate area coverage and compactness of the electrodeposited films.


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
A.M. Letsoalo ◽  
M.E. Lee ◽  
E.O. de Neijs

Semiconductor devices require metal contacts for efficient collection of electrical charge. The physics of these metal/semiconductor contacts assumes perfect, abrupt and continuous interfaces between the layers. However, in practice these layers are neither continuous nor abrupt due to poor nucleation conditions and the formation of interfacial layers. The effects of layer thickness, deposition rate and substrate stoichiometry have been previously reported. In this work we will compare the effects of a single deposition technique and multiple depositions on the morphology of indium layers grown on (100) CdTe substrates. The electrical characteristics and specific resistivities of the indium contacts were measured, and their relationships with indium layer morphologies were established.Semi-insulating (100) CdTe samples were cut from Bridgman grown single crystal ingots. The surface of the as-cut slices were mechanically polished using 5μm, 3μm, 1μm and 0,25μm diamond abrasive respectively. This was followed by two minutes immersion in a 5% bromine-methanol solution.


Author(s):  
J.P.S. Hanjra

Tin mono selenide (SnSe) with an energy gap of about 1 eV is a potential material for photovoltaic applications. Various authors have studied the structure, electronic and photoelectronic properties of thin films of SnSe grown by various deposition techniques. However, for practical photovoltaic junctions the electrical properties of SnSe films need improvement. We have carried out investigations into the properties of flash evaporated SnSe films. In this paper we report our results on the structure, which plays a dominant role on the electrical properties of thin films by TEM, SEM, and electron diffraction (ED).Thin films of SnSe were deposited by flash evaporation of SnSe fine powder prepared from high purity Sn and Se, onto glass, mica and KCl substrates in a vacuum of 2Ø micro Torr. A 15% HF + 2Ø% HNO3 solution was used to detach SnSe film from the glass and mica substrates whereas the film deposited on KCl substrate was floated over an ethanol water mixture by dissolution of KCl. The floating films were picked up on the grids for their EM analysis.


Sign in / Sign up

Export Citation Format

Share Document