scholarly journals Nutrigenetics and blood pressure optimization – focus on fat intake and fatty acid desaturase function

2021 ◽  
Vol 69 ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. 107
Author(s):  
Ni Komang Wiardani ◽  
Pande Putu Sri Sugiani ◽  
Ni Made Yuni Gumala

Background: Metabolic syndrome is a health problem with its prevalence increasing in the worldwide. It is characterized by a group metabolic factor including abdominal obesity, dyslipidemia, elevated blood pressure and insulin resistance. Metabolic syndrome affected by changes in lifestyle and unhealthy dietary patterns with high cholesterol, saturated fatty acid and trans fatty acid.Objective: The study conducted to know relationship between fat consumption with metabolic syndrome among adult people in Denpasar city.Method: The case control study designed was applied. The cases were adult people who had metabolic syndrome, and the control was healthy people from the case-neighboring household. Total subject were 130, taken by consecutive sampling: 65 cases and 65 controls. The subject identity, fat intake, waist circumference, blood pressure and fasting blood sugar were collected. The food frequency questionnaire (FFQ) was used to measure fat consumption and blood glucose test meter for measuring fasting blood sugar. Mantel Haenzel statistic analysis were used to test the association of fat intake with metabolic syndrome.Result: The study showed that means of syndrome metabolic component in case higher than control (p<0.05). Waist circumference in case was 97.23 cm, blood pressure was 141.4/93.3 mmHg, fasting blood glucose was 132 mg/dl. There were significant difference between intake fat total, cholesterol, saturated fatty acid (SAFA) and frequency of intake in case and control (p<0.05). Intake fat on cases were fat total 85.5% >25% energy total/day, SAFA 90.8% >10%, cholesterol 55.4% >300 mg/day. Odd Ratio Mantel Haenzel analysis showed that fat consumption (fat total, cholesterol and frequency consumption of fat were risk factor to metabolic syndrome (OR >1)).Conclusion: There was significant relations between fat consumption (fat total cholesterol, SAFA, frequency of fat consumption) with metabolic syndrome among adult people for Denpasar City.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1893-P
Author(s):  
AMBER B. COURVILLE ◽  
SHANNA BERNSTEIN ◽  
MIRELLA GALVAN-DE LA CRUZ ◽  
ANTHONY ONUZURUIKE ◽  
NIRUPA R. MATTHAN ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1245
Author(s):  
Naoufal Lakhssassi ◽  
Valéria Stefania Lopes-Caitar ◽  
Dounya Knizia ◽  
Mallory A. Cullen ◽  
Oussama Badad ◽  
...  

Soybean is the second largest source of oil worldwide. Developing soybean varieties with high levels of oleic acid is a primary goal of the soybean breeders and industry. Edible oils containing high level of oleic acid and low level of linoleic acid are considered with higher oxidative stability and can be used as a natural antioxidant in food stability. All developed high oleic acid soybeans carry two alleles; GmFAD2-1A and GmFAD2-1B. However, when planted in cold soil, a possible reduction in seed germination was reported when high seed oleic acid derived from GmFAD2-1 alleles were used. Besides the soybean fatty acid desaturase (GmFAD2-1) subfamily, the GmFAD2-2 subfamily is composed of five members, including GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E. Segmental duplication of GmFAD2-1A/GmFAD2-1B, GmFAD2-2A/GmFAD2-2C, GmFAD2-2A/GmFAD2-2D, and GmFAD2-2D/GmFAD2-2C have occurred about 10.65, 27.04, 100.81, and 106.55 Mya, respectively. Using TILLING-by-Sequencing+ technology, we successfully identified 12, 8, 10, 9, and 19 EMS mutants at the GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E genes, respectively. Functional analyses of newly identified mutants revealed unprecedented role of the five GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E members in controlling the seed oleic acid content. Most importantly, unlike GmFAD2-1 members, subcellular localization revealed that members of the GmFAD2-2 subfamily showed a cytoplasmic localization, which may suggest the presence of an alternative fatty acid desaturase pathway in soybean for converting oleic acid content without substantially altering the traditional plastidial/ER fatty acid production.


Author(s):  
Oliva Mendoza‐Pacheco ◽  
Gaspar Manuel Parra‐Bracamonte ◽  
Xochitl Fabiola De la Rosa‐Reyna ◽  
Ana María Sifuentes‐Rincón ◽  
Isidro Otoniel Montelongo‐Alfaro ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zolian S. Zoong Lwe ◽  
Ruth Welti ◽  
Daniel Anco ◽  
Salman Naveed ◽  
Sachin Rustgi ◽  
...  

AbstractUnderstanding the changes in peanut (Arachis hypogaea L.) anther lipidome under heat stress (HT) will aid in understanding the mechanisms of heat tolerance. We profiled the anther lipidome of seven genotypes exposed to ambient temperature (AT) or HT during flowering. Under AT and HT, the lipidome was dominated by phosphatidylcholine (PC), phosphatidylethanolamine (PE), and triacylglycerol (TAG) species (> 50% of total lipids). Of 89 lipid analytes specified by total acyl carbons:total carbon–carbon double bonds, 36:6, 36:5, and 34:3 PC and 34:3 PE (all contain 18:3 fatty acid and decreased under HT) were the most important lipids that differentiated HT from AT. Heat stress caused decreases in unsaturation indices of membrane lipids, primarily due to decreases in highly-unsaturated lipid species that contained 18:3 fatty acids. In parallel, the expression of Fatty Acid Desaturase 3-2 (FAD3-2; converts 18:2 fatty acids to 18:3) decreased under HT for the heat-tolerant genotype SPT 06-07 but not for the susceptible genotype Bailey. Our results suggested that decreasing lipid unsaturation levels by lowering 18:3 fatty-acid amount through reducing FAD3 expression is likely an acclimation mechanism to heat stress in peanut. Thus, genotypes that are more efficient in doing so will be relatively more tolerant to HT.


2019 ◽  
Vol 67 (4) ◽  
pp. 327-332 ◽  
Author(s):  
Kohjiro Nagao ◽  
Akira Murakami ◽  
Masato Umeda

2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Takatsugu Goto ◽  
Hideki Hirakawa ◽  
Yuji Morita ◽  
Junko Tomida ◽  
Jun Sato ◽  
...  

We report the complete genome sequence of Moraxella osloensis strain KMC41, isolated from laundry with malodor. The KMC41 genome comprises a 2,445,556-bp chromosome and three plasmids. A fatty acid desaturase and at least four β-oxidation-related genes putatively associated with 4-methyl-3-hexenoic acid generation were detected in the KMC41 chromosome.


Sign in / Sign up

Export Citation Format

Share Document