Competence development and learning assistance systems for the data-driven future

2021 ◽  
Author(s):  
Wilfried Sihn ◽  
Sebastian Schlund

The continuous acquisition of new digital competences and the development of situational learning assistance systems will become more important than ever in the coming years, because the world of work is becoming more complex, more informative and all above more data-driven. Jobs are changing due to increasing digitalisation, whereby the use of modern technologies must be designed in a way, that employees can continue to work productively in the company despite these changes and benefit purposefully from digital solutions. The research results presented under the main topic „Competence development and learning assistance systems for the data-driven future“ address this problem of state of the art technologies in the workplace and their effects on workers. The members of the Scientific Society for Work and Business Organisation (WGAB) present innovative concepts and research results for practitioners and scientists and thus provide valuable input for current challenges.

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2085
Author(s):  
Xue-Bo Jin ◽  
Ruben Jonhson Robert RobertJeremiah ◽  
Ting-Li Su ◽  
Yu-Ting Bai ◽  
Jian-Lei Kong

State estimation is widely used in various automated systems, including IoT systems, unmanned systems, robots, etc. In traditional state estimation, measurement data are instantaneous and processed in real time. With modern systems’ development, sensors can obtain more and more signals and store them. Therefore, how to use these measurement big data to improve the performance of state estimation has become a hot research issue in this field. This paper reviews the development of state estimation and future development trends. First, we review the model-based state estimation methods, including the Kalman filter, such as the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc. Particle filters and Gaussian mixture filters that can handle mixed Gaussian noise are discussed, too. These methods have high requirements for models, while it is not easy to obtain accurate system models in practice. The emergence of robust filters, the interacting multiple model (IMM), and adaptive filters are also mentioned here. Secondly, the current research status of data-driven state estimation methods is introduced based on network learning. Finally, the main research results for hybrid filters obtained in recent years are summarized and discussed, which combine model-based methods and data-driven methods. This paper is based on state estimation research results and provides a more detailed overview of model-driven, data-driven, and hybrid-driven approaches. The main algorithm of each method is provided so that beginners can have a clearer understanding. Additionally, it discusses the future development trends for researchers in state estimation.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2371
Author(s):  
Matthieu Dubarry ◽  
David Beck

The development of data driven methods for Li-ion battery diagnosis and prognosis is a growing field of research for the battery community. A big limitation is usually the size of the training datasets which are typically not fully representative of the real usage of the cells. Synthetic datasets were proposed to circumvent this issue. This publication provides improved datasets for three major battery chemistries, LiFePO4, Nickel Aluminum Cobalt Oxide, and Nickel Manganese Cobalt Oxide 811. These datasets can be used for statistical or deep learning methods. This work also provides a detailed statistical analysis of the datasets. Accurate diagnosis as well as early prognosis comparable with state of the art, while providing physical interpretability, were demonstrated by using the combined information of three learnable parameters.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2778 ◽  
Author(s):  
Mohsen Azimi ◽  
Armin Eslamlou ◽  
Gokhan Pekcan

Data-driven methods in structural health monitoring (SHM) is gaining popularity due to recent technological advancements in sensors, as well as high-speed internet and cloud-based computation. Since the introduction of deep learning (DL) in civil engineering, particularly in SHM, this emerging and promising tool has attracted significant attention among researchers. The main goal of this paper is to review the latest publications in SHM using emerging DL-based methods and provide readers with an overall understanding of various SHM applications. After a brief introduction, an overview of various DL methods (e.g., deep neural networks, transfer learning, etc.) is presented. The procedure and application of vibration-based, vision-based monitoring, along with some of the recent technologies used for SHM, such as sensors, unmanned aerial vehicles (UAVs), etc. are discussed. The review concludes with prospects and potential limitations of DL-based methods in SHM applications.


Author(s):  
Pengcheng Wang ◽  
Jonathan Rowe ◽  
Wookhee Min ◽  
Bradford Mott ◽  
James Lester

Interactive narrative planning offers significant potential for creating adaptive gameplay experiences. While data-driven techniques have been devised that utilize player interaction data to induce policies for interactive narrative planners, they require enormously large gameplay datasets. A promising approach to addressing this challenge is creating simulated players whose behaviors closely approximate those of human players. In this paper, we propose a novel approach to generating high-fidelity simulated players based on deep recurrent highway networks and deep convolutional networks. Empirical results demonstrate that the proposed models significantly outperform the prior state-of-the-art in generating high-fidelity simulated player models that accurately imitate human players’ narrative interactions. Using the high-fidelity simulated player models, we show the advantage of more exploratory reinforcement learning methods for deriving generalizable narrative adaptation policies.


2021 ◽  
Author(s):  
Cedric Twardzik ◽  
Mathilde Vergnolle ◽  
Anthony Sladen ◽  
Louisa L. H. Tsang

Abstract. It is well-established that the post-seismic slip results from the combined contribution of seismic slip and aseismic slip. However, the partitioning between these two modes of slip remains unclear due to the difficulty to infer detailed and robust descriptions of how both evolve in space and time. This is particularly true just after a mainshock when both processes are expected to be the strongest. Using state-of-the-art sub-daily processing of GNSS data, along with dense catalogs of aftershocks obtained from template-matching techniques, we unravel the spatiotemporal evolution of post-seismic slip and aftershocks over the first 12 hours following the 2015 Mw8.3 Illapel, Chile, earthquake. We show that the very early post-seismic activity occurs over two regions with distinct behaviors. To the north, post-seismic slip appears to be purely aseismic and precedes the occurrence of late aftershocks. To the south, aftershocks are the primary cause of the post-seismic slip. We suggest that this difference in behavior could be inferred only few hours after the mainshock, and thus could contribute to a more data-driven forecasts of long-term aftershocks.


2021 ◽  
Vol 29 (2) ◽  
pp. 1229
Author(s):  
Paula Tavares Pinto ◽  
Diva Cardoso de Camargo ◽  
Talita Serpa ◽  
Luciano Franco da Silva

Abstract: Authors from different countries have published their papers in English, aiming to promote their research results widely and to become internationally known by their peers. It is also true that, although they are aware of the English terminology used in their respective field, some authors still struggle with some features of academic writing such as collocations. Thus, this paper presents a discussion on the underuse and overuse traces of academic collocations by Brazilian authors who had their articles published in English on an open electronic library of scientific journals. In order to analyse the collocations used by these researchers, we compiled a 906,035-word corpus from eight different academic areas. The collocations observed were statistically compared to those from an academic corpus of English writings which contains texts produced by English-speaking authors. Results showed that there are more collocations underused than overused by the authors. The analysis proved that the collocation repertoire of researchers could be broadened by being pointed out during academic writing workshops.Keywords: academic collocations; research paper writing; corpus linguistics.Resumo: Autores de vários países têm publicado seus artigos científicos em inglês com o intuito de promover amplamente os resultados de suas pesquisas dentre a comunidade científica internacional. É verdade que, embora estejam cientes da terminologia utilizada no respectivo campo de pesquisa, alguns autores ainda apresentam dificuldade em lidar com certas características da escrita acadêmica, como o uso das colocações. Este artigo apresenta uma discussão sobre traços de sobreuso e subuso de colocações acadêmicas utilizadas por autores brasileiros que têm seus artigos publicados em inglês numa plataforma eletrônica aberta de artigos científicos. Para analisar as colocações utilizadas por estes pesquisadores, compilamos um corpus de 906.000 palavras a partir de oito áreas científicas. As colocações analisadas foram comparadas estatisticamente com as colocações de um corpus acadêmico de inglês que contém textos escritos por autores anglófonos. Os resultados mostraram que há mais traços de subuso que sobreuso de colocações acadêmicas utilizadas pelos pesquisadores e este repertório poderia ser ampliado se fossem destacadas durante cursos de escrita acadêmica em língua inglesa.Palavras-chave: colocações acadêmicas; escrita de artigos científicos; linguística de corpus.


2018 ◽  
Vol 37 (13-14) ◽  
pp. 1632-1672 ◽  
Author(s):  
Sanjiban Choudhury ◽  
Mohak Bhardwaj ◽  
Sankalp Arora ◽  
Ashish Kapoor ◽  
Gireeja Ranade ◽  
...  

Robot planning is the process of selecting a sequence of actions that optimize for a task=specific objective. For instance, the objective for a navigation task would be to find collision-free paths, whereas the objective for an exploration task would be to map unknown areas. The optimal solutions to such tasks are heavily influenced by the implicit structure in the environment, i.e. the configuration of objects in the world. State-of-the-art planning approaches, however, do not exploit this structure, thereby expending valuable effort searching the action space instead of focusing on potentially good actions. In this paper, we address the problem of enabling planners to adapt their search strategies by inferring such good actions in an efficient manner using only the information uncovered by the search up until that time. We formulate this as a problem of sequential decision making under uncertainty where at a given iteration a planning policy must map the state of the search to a planning action. Unfortunately, the training process for such partial-information-based policies is slow to converge and susceptible to poor local minima. Our key insight is that if we could fully observe the underlying world map, we would easily be able to disambiguate between good and bad actions. We hence present a novel data-driven imitation learning framework to efficiently train planning policies by imitating a clairvoyant oracle: an oracle that at train time has full knowledge about the world map and can compute optimal decisions. We leverage the fact that for planning problems, such oracles can be efficiently computed and derive performance guarantees for the learnt policy. We examine two important domains that rely on partial-information-based policies: informative path planning and search-based motion planning. We validate the approach on a spectrum of environments for both problem domains, including experiments on a real UAV, and show that the learnt policy consistently outperforms state-of-the-art algorithms. Our framework is able to train policies that achieve up to [Formula: see text] more reward than state-of-the art information-gathering heuristics and a [Formula: see text] speedup as compared with A* on search-based planning problems. Our approach paves the way forward for applying data-driven techniques to other such problem domains under the umbrella of robot planning.


2021 ◽  
Vol 42 (12) ◽  
pp. 124101
Author(s):  
Thomas Hirtz ◽  
Steyn Huurman ◽  
He Tian ◽  
Yi Yang ◽  
Tian-Ling Ren

Abstract In a world where data is increasingly important for making breakthroughs, microelectronics is a field where data is sparse and hard to acquire. Only a few entities have the infrastructure that is required to automate the fabrication and testing of semiconductor devices. This infrastructure is crucial for generating sufficient data for the use of new information technologies. This situation generates a cleavage between most of the researchers and the industry. To address this issue, this paper will introduce a widely applicable approach for creating custom datasets using simulation tools and parallel computing. The multi-I–V curves that we obtained were processed simultaneously using convolutional neural networks, which gave us the ability to predict a full set of device characteristics with a single inference. We prove the potential of this approach through two concrete examples of useful deep learning models that were trained using the generated data. We believe that this work can act as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research, such as device engineering, yield engineering or process monitoring. Moreover, this research gives the opportunity to anybody to start experimenting with deep neural networks and machine learning in the field of microelectronics, without the need for expensive experimentation infrastructure.


Sign in / Sign up

Export Citation Format

Share Document