FUZZY LOGIC METODE TSUKAMOTO UNTUK PREDIKSI PRODUKSI CPO DENGAN PERMINTAAN BERSIFAT STOKASTIK PADA PT. TOR GANDA

Author(s):  
Frainskoy Rio Naibaho

The best decision is the main goal in a problem. Decisions in the determination of stock Crude Palm Oil (CPO) the Palm Oil Mill  is very important because it is directly in contact with the company's survival. Uncertain demand becomes a major problem in the sales of CPO, and so we need a system that can answer this question. Fuzzy logic is used in matters relating to the forecast with a high degree of accuracy. Fuzzy logic mapped the problem by first changing into linguistic mathematical conditions. Role created can answer many problems, including the problem of prediction. Fuzzy logic system consists of a subset of fuzzy and fuzzy rules. Fuzzy subsets represent different subsets of input and output variables. Fuzzy rules associated with input variables to the output variable via the subsets. Given the fuzzy rules which can be formed very flexible, then the fuzzy system can compute problems quickly and efficiently.Keywords: Fuzzy Logic, Tsukamoto, stochastic, inventories, CPO

2019 ◽  
Vol 9 (2) ◽  
pp. 12-20
Author(s):  
Julio Warmansyah ◽  
Dida Hilpiah

 PT. Cahaya Boxindo Prasetya is a company engaged in the manufacture of carton boxes or boxes. The company's activities also include cutting and printing services using machinery and human power. The problem faced in this company is the difficulty of predicting the amount of inventory of raw materials that will be  included in the production. The remaining raw materials for production will be used as the final stock to get the minimum, the goal is to reduce excess stock Overcoming this problem, fuzzy logic is used to predict raw material inventories by focusing on the final stock. In this study using Fuzzy Sugeno, with three input variables, namely: initial inventory, purchase, production, while the output is the final stock. Determination of prediction results using defuzzification using the average concept of MAPE (Mean Absolute Percentage Error). The results obtained, using the Fuzzy Sugeno method can predict the inventory of raw materials with a MAPE value of 38%. 


2014 ◽  
Vol 154 ◽  
pp. 102-107 ◽  
Author(s):  
Abdul Azis Ariffin ◽  
H.M. Ghazali ◽  
Parviz Kavousi
Keyword(s):  
Palm Oil ◽  

2020 ◽  
Vol 10 (10) ◽  
pp. 3653 ◽  
Author(s):  
Wafaa Shoukry Saleh ◽  
Maha M A Lashin

This paper assesses pedestrian crossing behavior and critical gaps at a two-way midblock crossing location. A critical gap is the shortest gap that a pedestrian accepts when crossing a road. A dataset was collected in 2017 in Edinburgh (UK). The analysis was performed using the fuzzy logic system. The adopted membership function of the fuzzy logic system is of a triangular form since it has a simple and convenient structure. The input variables that are used in the analysis are the number and length of rejected gaps and length of accepted gaps at the crossing location. The output variables are the critical gaps. The results show that assessing critical gap estimation of pedestrians crossing using fuzzy logic is achievable and produces reasonable values that are comparable to values that are reported in the literature. This outcome improves the understanding of pedestrian crossing behavior and could therefore have implications for transport infrastructure design. Further analysis using additional parameters including waiting time and demographic characteristics and alternative forms for membership functions are strongly encouraged.


2019 ◽  
Vol 14 (2) ◽  
pp. 174-186
Author(s):  
Tajul Rosli Razak ◽  
Iman Hazwam Abd Halim ◽  
Muhammad Nabil Fikri Jamaludin ◽  
Mohammad Hafiz Ismail ◽  
Shukor Sanim Mohd Fauzi

Recommendation system, also known as a recommender system, is a tool to help the user in providing asuggestion of a specific dilemma. Recently, the interest in developing a recommendation system in manyfields has increased. Fuzzy Logic system (FLSs) is one of the approaches that can be used to model therecommendation systems as it can deal with uncertainty and imprecise information. However, one of thefundamental issues in FLS is the problem of the curse of dimensionality. That is, the number of rules inFLSs is increasing exponentially with the number of input variables. One effective way to overcome thisproblem is by using Hierarchical Fuzzy System (HFSs). This paper aims to explore the use of HFSs forRecommendation system. Specifically, we are interested in exploring and comparing the HFS and FLS forthe Career path recommendation system (CPRS) based on four key criteria, namely topology, the numberof rules, the rules structures and interpretability. The findings suggested that the HFS has advantagesover FLS towards improving the interpretability models, in the context of a recommendation systemexample. This study contributes to providing an insight into the development of interpretable HFSs in theRecommendation systems. Keywords: Fuzzy Logic Systems, Hierarchical Fuzzy Systems, Recommendation Systems


Author(s):  
M. Mohammadian

Systems such as robotic systems and systems with large input-output data tend to be difficult to model using mathematical techniques. These systems have typically high dimensionality and have degrees of uncertainty in many parameters. Artificial intelligence techniques such as neural networks, fuzzy logic, genetic algorithms and evolutionary algorithms have created new opportunities to solve complex systems. Application of fuzzy logic [Bai, Y., Zhuang H. and Wang, D. (2006)] in particular, to model and solve industrial problems is now wide spread and has universal acceptance. Fuzzy modelling or fuzzy identification has numerous practical applications in control, prediction and inference. It has been found useful when the system is either difficult to predict and or difficult to model by conventional methods. Fuzzy set theory provides a means for representing uncertainties. The underlying power of fuzzy logic is its ability to represent imprecise values in an understandable form. The majority of fuzzy logic systems to date have been static and based upon knowledge derived from imprecise heuristic knowledge of experienced operators, and where applicable also upon physical laws that governs the dynamics of the process. Although its application to industrial problems has often produced results superior to classical control, the design procedures are limited by the heuristic rules of the system. It is simply assumed that the rules for the system are readily available or can be obtained. This implicit assumption limits the application of fuzzy logic to the cases of the system with a few parameters. The number of parameters of a system could be large. The number of fuzzy rules of a system is directly dependent on these parameters. As the number of parameters increase, the number of fuzzy rules of the system grows exponentially. Genetic Algorithms can be used as a tool for the generation of fuzzy rules for a fuzzy logic system. This automatic generation of fuzzy rules, via genetic algorithms, can be categorised into two learning techniques, supervised and unsupervised. In this paper unsupervised learning of fuzzy rules of hierarchical and multi-layer fuzzy logic control systems are considered. In unsupervised learning there is no external teacher or critic to oversee the learning process. In other words, there are no specific examples of the function to be learned by the system. Rather, provision is made for a task-independent measure of the quality or representation that the system is required to learn. That is the system learns statistical regularities of the input data and it develops the ability to learn the feature of the input data and thereby create new classes automatically [Mohammadian, M., Nainar, I. and Kingham, M. (1997)]. To perform unsupervised learning, a competitive learning strategy may be used. The individual strings of genetic algorithms compete with each other for the “opportunity” to respond to features contained in the input data. In its simplest form, the system operates in accordance with the strategy that ‘the fittest wins and survives’. That is the individual chromosome in a population with greatest fitness ‘wins’ the competition and gets selected for the genetic algorithms operations (cross-over and mutation). The other individuals in the population then have to compete with fit individual to survive. The diversity of the learning tasks shown in this paper indicates genetic algorithm’s universality for concept learning in unsupervised manner. A hybrid integrated architecture incorporating fuzzy logic and genetic algorithm can generate fuzzy rules for problems requiring supervised or unsupervised learning. In this paper only unsupervised learning of fuzzy logic systems is considered. The learning of fuzzy rules and internal parameters in an unsupervised manner is performed using genetic algorithms. Simulations results have shown that the proposed system is capable of learning the control rules for hierarchical and multi-layer fuzzy logic systems. Application areas considered are, hierarchical control of a network of traffic light control and robotic systems. A first step in the construction of a fuzzy logic system is to determine which variables are fundamentally important. Any number of these decision variables may appear, but the more that are used, the larger the rule set that must be found. It is known [Raju, S., Zhou J. and Kisner, R. A. (1990), Raju G. V. S. and Zhou, J. (1993), Kingham, M., Mohammadian, M, and Stonier, R. J. (1998)], that the total number of rules in a system is an exponential function of the number of system variables. In order to design a fuzzy system with the required accuracy, the number of rules increases exponentially with the number of input variables and its associated fuzzy sets for the fuzzy logic system. A way to avoid the explosion of fuzzy rule bases in fuzzy logic systems is to consider Hierarchical Fuzzy Logic Control (HFLC) [Raju G. V. S. and Zhou, J. (1993)]. A learning approach based on genetic algorithms [Goldberg, D. (1989)] is discussed in this paper for the determination of the rule bases of hierarchical fuzzy logic systems.


Sign in / Sign up

Export Citation Format

Share Document