scholarly journals Development of Computational Model of Motorcycle and Rider during Collision

Author(s):  
Aziz Fathurrahman Arwardy ◽  
◽  
Zaleha Mohamad ◽  

The goal of this project is to develop the computational model of motorcycle and rider for deformable body. Also, to identify the response of rider and motorcycle on collision. Computational model is the one method that can replace the actual experiment on crash test. From the simulation can save cost by actual impact crash test. This project begins with design the model of actual motorcycle. Because the model of the project using Honda Wave 100R is to complex and the computer not powerful enough to generate mesh the simplified model is use for the project. Then, the material of this project using ANSI 304 stainless steel. The simulation of the experiment run by the ANSYS software to calculate mathematical model result after impact. Finally, the result of deformation was recorded to compare the result of deformation on actual crash test. The Comparison result of deformation actual and simulation are quietly similar

2011 ◽  
Vol 486 ◽  
pp. 139-142
Author(s):  
Chao Cheng Chang ◽  
Dinh Hiep Nguyen ◽  
Hsin Sheng Hsiao

A metal forming system comprising an electrical heater, capable of conducting processes at elevated temperatures, was developed to perform micro backward extrusion processes of SUS 304 stainless steel. Two punches with diameters of 1.6 mm and 1.8 mm were used to extrude the billets inside the die with an inner diameter of 2 mm. All processes were lubricated with water-based graphite and conducted under isothermal conditions at 400 °C. The results show that the developed extrusion system can be used to produce the stainless steel components with a micro cup-shaped profile. Moreover, the variation in the rim height of the cups produced by the 1.8 mm diameter punch is greater than the one by the 1.6 mm diameter punch. The results show that a decrease in the clearance between the punch and die could lead to an increase in the inhomogeneity of material flow in the micro backward extrusion processes.


2013 ◽  
Vol 771 ◽  
pp. 35-40 ◽  
Author(s):  
Yi Dong Jin ◽  
Chao Yin Nie ◽  
Chun Hua Ran ◽  
Wen Zhu ◽  
Yang Zhao ◽  
...  

To improve adhesion strength of DLC coatings on 304 stainless steel substrate,we studied substrate pretreatment by electrolytic/chemical etching methods.In this study,The DLC coatings were deposited on two groups of 304 stainless steel which had been electrolytically and chemically etched separately. The morphology of the coatings and substrate were characterized by SEM and metalloscope. The surface roughness of substrate was measured by roughness tester .The result shows that adhesion strength of DLC coatings on 304 stainless steel substrate is improved obviously due to mechanical interlock,surface adsorption and stress release.With prolonging the etching time,the adhesion strength of DLC coatings on the chemically etched substrate increase firstly and then decrease. The adhesion strength of DLC coatings on electrolytically etched substrate continuously increase. DLC coatings on electrolytically etched substrate perform better than the one on chemically etched substrate in adhesion.This is caused by the different surface morphology.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 726
Author(s):  
Zhang ◽  
Du ◽  
Wang ◽  
Zhao ◽  
Zhou

Potassium ferricyanide and potassium ferrocyanide were used to observe and monitor the pitting corrosion of 304 stainless steel (SS) at anodic polarization in situ. The results show that there are Fe3+ ions around the corrosion pit when pitting occurs on 304 SS in NaCl aqueous solution. The effect of Fe3+ surrounded pits on the pitting corrosion was also studied by testing the electrochemical behavior of 304 SS in different Fe3+/Fe2+ solutions. The presence of Fe3+ leads to the positive shift of corrosion potential and the increase of corrosion rate of 304 SS. There are two possible reasons for this phenomenon. On the one hand, Fe3+ hydrolysis results in the decrease of pH value of solution. At the same iron ion concentration, the higher the Fe3+ ion concentration, the lower the solution pH value. On the other hand, Fe3+ may reduce on the electrode surface. The decrease of solution pH and the reduction of Fe3+ resulted in the acceleration of the corrosion rate.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
Y. L. Chen ◽  
J. R. Bradley

Considerable effort has been directed toward an improved understanding of the production of the strong and stiff ∼ 1-20 μm diameter pyrolytic carbon fibers of the type reported by Koyama and, more recently, by Tibbetts. These macroscopic fibers are produced when pyrolytic carbon filaments (∼ 0.1 μm or less in diameter) are thickened by deposition of carbon during thermal decomposition of hydrocarbon gases. Each such precursor filament normally lengthens in association with an attached catalyst particle. The subject of filamentous carbon formation and much of the work on characterization of the catalyst particles have been reviewed thoroughly by Baker and Harris. However, identification of the catalyst particles remains a problem of continuing interest. The purpose of this work was to characterize the microstructure of the pyrolytic carbon filaments and the catalyst particles formed inside stainless steel and plain carbon steel tubes. For the present study, natural gas (∼; 97 % methane) was passed through type 304 stainless steel and SAE 1020 plain carbon steel tubes at 1240°K.


Author(s):  
M. R. Pinnel ◽  
A. Lawley

Numerous phenomenological descriptions of the mechanical behavior of composite materials have been developed. There is now an urgent need to study and interpret deformation behavior, load transfer, and strain distribution, in terms of micromechanisms at the atomic level. One approach is to characterize dislocation substructure resulting from specific test conditions by the various techniques of transmission electron microscopy. The present paper describes a technique for the preparation of electron transparent composites of aluminum-stainless steel, such that examination of the matrix-fiber (wire), or interfacial region is possible. Dislocation substructures are currently under examination following tensile, compressive, and creep loading. The technique complements and extends the one other study in this area by Hancock.The composite examined was hot-pressed (argon atmosphere) 99.99% aluminum reinforced with 15% volume fraction stainless steel wire (0.006″ dia.).Foils were prepared so that the stainless steel wires run longitudinally in the plane of the specimen i.e. the electron beam is perpendicular to the axes of the wires. The initial step involves cutting slices ∼0.040″ in thickness on a diamond slitting wheel.


Sign in / Sign up

Export Citation Format

Share Document