scholarly journals Effect of Integration of Seed Bio-priming and Inorganic Fertilization on Soil Physico-chemical Properties of Sunflower (Helianthus annuus L.)

Author(s):  
O. Siva Devika

Conventional agricultural practices rely on the immense application of agrochemicals that show detrimental effects on soil biota. Negative impacts on soil microbiota and enzymes that involve in nutrient cycles hinder nutrient availability. Application of plant growth-promoting microbes such as Trichoderma spp. can evade these hurdles by improving soil biodiversity and performance of the crop. A pot culture experiment was conducted during two consecutive years (2018 and 2019) to figure out the effect of different doses of fertilizers and seed bio-priming with Trichoderma asperellum BHUT8 in sunflower (PAC-334) on soil chemical properties. Results showed that the initial soil reaction was slightly alkaline that tend towards neutral with seed bio-priming. The electrical conductivity of soil in both seasons varied randomly among imposed treatments. Soil cation exchange capacity, which permits the soil to hold all essential nutrients, was enhanced 4% with the supply of 70% recommended dose of fertilizer and seed bio-priming. Soil available nitrogen, phosphorus, and potassium were found maximum in the treatments supplied with Trichoderma through seed bio-priming. Inoculation of Trichoderma showed positive effects on soil chemical properties and reduced the requirement of inorganic fertilizers.

Author(s):  
O. A. Denton ◽  
I. O. Fademi ◽  
K. S. Are ◽  
A. O. Ojo ◽  
O. D. Adeoyolanu

Application of manure for soil amendment plays important roles in reclaiming and improving soil properties of degraded soils. This study assessed the effects of composted and non-composted manures on a degraded soil under continuous maize production. The treatments applied consisted of composted manures in form of cassava based compost (CBM) and verticompost (VC) at the rate of 0, 30, 60 and 120 tons/ha, non-composted manure (NC) applied as poultry manure (PM), and an un-amended control plot. These treatments were laid out in a randomized complete block design replicated three times. Soil physical and chemical properties were determined for two consecutive seasons, with maize (SUWAN 1-SYR) planted as test crop. The CBM, VC and PM treatments increased the soil organic carbon content by 18.2, 24.1, and 22.3 % respectively. Corresponding increases observed in cation exchange capacity (CEC) were 13.6, 15.7, and 15.2 %. The comparison of the soil chemical properties measured indicated positive effects from the amendments on the soil properties in the order: CBM < PM < VC.  The maize grain yield of cassava based fertilized plot consistently and significantly was higher than the other treatments in both cropping seasons. However, both the composted and non-composted manures favored improved maize growth and resulted in higher grain yields (4.62 – 6.03 t ha-1) than the un-amended control treatment (3.69 t ha-1). The study therefore showed that the incorporation of manures, whether composted or non-composted, is beneficial to soils, improving one or more essential soil attributes thus reducing soil degradation.


Author(s):  
Vítězslav Vlček ◽  
Miroslav Pohanka

Soil samples (n = 11) were collected in the chernozem areas of the Czech Republic (the Central Europe) from the topsoil and used as representative samples. All sampling areas have been used for agricultural purposes (arable soil) and they were selected as typical representatives of agricultural soil. These samples represented the soil with same genesis (to reduction differencies between soil types) but with different soil properties (physical and chemical). Complete chemical and physical analyses were made for confirmation of copper adsorption on solid phase: we analysed the particle size distribution, content of oxidizable carbon (Cox), the cation exchange capacity (CEC), supply of exchange calcium, magnesium, sodium, phosphorus and potassium, soil reaction and the total supply of Fe, Al, Mn, Ca, Mg, K, P and N. The strongest simple correlation between analysed soil properties and copper concentration had content of available magnesium (r = 0.44) and available phosphorus (r = −0.51). In the case of multiple correlations (i. e. collective influence of multiple soil properties) had the strongest influence combination of clay, soil reaction, total content of phosphorus, available magnesium and available phosphorus. The main influence of phosphorus and magnesium is evident. We suppose that copper and phosphorus enter into specific complex. Influence of these five soil properties can explain 92.7 % (r = 0.927) changes in the content of copper changes in the experiment.


Author(s):  
C. V. Ogbenna ◽  
V. E. Osodeke

Aim: A pot experiment was carried out to determine the effect of sawdust ash and lime (Ca(OH)2) on soil characteristics and yield of sunflower in acidic soil of southeastern Nigeria. Study Design: The experiment was laid out in split-plot design, using sawdust ash (0, 1, 2, 3, 4 t ha-1) as the sub plot and lime (0, 0.5, 1.0, 1.5 t ha-1) as the main plot. Place and Duration of Study: Study was conducted outdoors at Michael Okpara University of Agriculture Umudike, Nigeria, during the 2010 planting season. Materials and Methods: Treatment combinations were applied to the 60 buckets containing soil, mixed thoroughly and watered adequately. After 1 week of treatment application, two sunflower seeds were planted and later thinned to one seedling per bucket. Plant growth and yield data were collected. Pre planting and post-harvest soil samples were collected and analyzed for soil properties. Results: Results showed that with the exception of organic carbon there was significant effect of treatments on all soil chemical properties. Lime and sawdust ash (SDA) as single and combined treatments significantly increased total nitrogen (P=0.05), available phosphorus (P<0.010), and base saturation (P<0.012). The interaction between SDA and lime significantly (P=0.05) increased total exchangeable bases and effective cation exchange capacity, while soil pH was significantly increased (P=0.05) by single applications. The increases in soil chemical properties led to significant positive response of the sunflower. With the exception of number of leaves, other plant parameters (Plant height, stem diameter, head weight, 50 seed weight, head diameter) had significant increases for sawdust ash alone at P=0.05. Correlation studies showed positive significant relationship between soil pH and sunflower yield. Conclusion: The study showed that sunflower performed best at the combination of 3 tha-1 SDA and 1.5 t ha-1 lime producing a mean head weight of 45.4 g.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4071 ◽  
Author(s):  
Marcos Vinícius Mansano Sarto ◽  
Maria do Carmo Lana ◽  
Leandro Rampim ◽  
Jean Sérgio Rosset ◽  
Jaqueline Rocha Wobeto

<p>An improvement in soil chemical properties and crop development with silicate application has been confirmed in several plant species. The effects of silicate application on soil chemical properties and wheat growth were investigated in the present study. The experiment was carried out in 8-L plastic pots in a greenhouse. Treatments were arranged in a randomized block design in a 3 × 5 factorial: three soils [Rhodic Acrudox (Ox1), Rhodic Hapludox (Ox2) and Arenic Hapludult (Ult)] and five silicate rates (0, 1, 2, 4 and 6 Mg ha–1 of calcium/magnesium silicate), with four replications. The plant length, number of spikes per pot, shoot dry matter and grain yield, were measured after 115 days of wheat (<em>Triticum aestivum </em>L.) growth. Changes in the soil chemical properties (pH, H+ + Al3+, Al3+, P, K, Ca, Mg, Si, Cu, Zn, Fe and Mn) were analyzed after wheat harvest. Application of calcium/magnesium silicate reduces the potential acidity (H+ + Al3+) and Al3+ phytotoxic; and increases the soil pH, available Ca, Mg and Si, cation exchange capacity (CEC) and soil base saturation. Silicate application did not affect the available P, exchangeable K and availability of micronutrients (Cu, Zn, Fe and Mn) in the three soils. The application of calcium/magnesium silicate in an acid clayey Rhodic Hapludox improves the development and yield of wheat; however, the silicate application in soil with pH higher to 5.3 and high Si availability does not affect the agronomic characteristics and grain yield of wheat.</p><p><strong> </strong></p>


Plant Disease ◽  
2021 ◽  
Author(s):  
Yajiao Wang ◽  
Lijing Ji ◽  
Qiusheng Li ◽  
yu xing wu ◽  
Congcong Li ◽  
...  

On the North China Plain, one of the most water-deficient regions in China, bare fallow has been implemented over a large-scale area to conserve water during the growth season of water-intensive winter wheat since 2015. However, the effects of this bare fallow on fungal community and the occurrence of crop diseases are poorly understood. Here we measured soil chemical properties, fungal community composition and the occurrence of crop diseases after 15 years of long-term fallow (continuous maize or soybean) and non-fallow (maize-wheat rotation; soybean-wheat rotation) cropping systems. Bare fallow during the winter-wheat growth season significantly decreased soil organic matter, available nitrogen and phosphorus. It also changed the composition of soil fungal communities, i.e., increased relative abundances of some potentially pathogenic species of Lectera, Fusarium and Volutella but decreased beneficial Cladorrhium and Schizothecium. Meanwhile, the epidemic tendency of maize diseases changed correspondingly: the disease index of southern corn leaf blight and maize brown spot increased, but the incidence of stalk rot decreased compared with the non-fallow system. Soybean diseases were very mild regardless of the cropping system during the total experimental period. Network analysis demonstrated that the soil fungal diversity associated with maize diseases was affected by the decreased soil organic matter and available nitrogen and phosphorus. Our results suggest that bare fallow in winter-wheat season affected the soil chemical properties, fungal community and the occurrence of maize fungal diseases.


1998 ◽  
Vol 34 (3) ◽  
pp. 259-276 ◽  
Author(s):  
J. M. POWELL ◽  
F. N. IKPE ◽  
Z. C. SOMDA ◽  
S. FERNÁNDEZ-RIVERA

Most farming systems in semi-arid West Africa rely on organic matter recycling for maintaining soil fertility. The cycling of biomass through ruminant livestock into dung (faeces) and urine that fertilize the soil has long been an important factor in t he nutrient cycling processes of these integrated, mixed crop/livestock systems. While dung greatly improves soil properties and crop yields, little is known about the effects of urine on soil chemical properties and the impact of dung and urine on crop p roduction. An average voiding of sheep urine applied to a sandy, siliceous soil in the Republic of Niger increased soil pH, available phosphorus and ammonium levels dramatically in the upper 10–15 cm of soil, especially during the first week following application. Losses of applied urine nitrogen via volatilization were in the order of 30–50%. A four-year field trial was conducted on the same soil type to evaluate the effects on pearl millet and weed yields of corralling cattle o r sheep overnight on cropland (dung plus urine application) for one, two or three nights, every one, two or three years versus the effects of applying only dung at the same application rates and intervals achieved with corralling. The main results of this field trial were that (1) urine had large positive effects on millet grain, threshed panicle, leaf, stem and weed yields, (2) sheep dung was more effective than cattle dung in increasing yield, (3) two nights of dung application was adequate for maximum yield and (4) the positive effects of dung and urine on yield lasted two to three cropping seasons after application.


2019 ◽  
Vol 28 (1) ◽  
pp. 121-129
Author(s):  
Afroja Nasrin ◽  
Sayma Khanom ◽  
Shahid Akhtar Hossain

An incubation study was conducted to find out the best mixing ratio of acid and calcareous soil (maintaining 70% moisture) for pot experiment. Depending on various physico-chemical properties mixed soil 1 : 1 (i.e. acid : calcareous) was selected for pot experiment. The pot experiment was carried out to observe the effects of vermicompost and compost on soil properties and growth and yield of Kalmi (Ipomoea aquatica Forsk.). This experiment included seven treatments with three replications including control. Treatment variables were T0 (control), T1 (4 t/ha vermicompost), T2 (8 t/ha vermicompost), T3 (12 t/ha vermicompost), T4 (4 t/ha compost), T5 (8 t/ha compost) and T6 (12 t/ha compost). All the treatments had significant positive effects over control on growth and yield of kalmi. The highest growth and yield were recorded with T3 (12 t/ha vermicompost) treatment. In case of, macro and micronutrient uptake treatment T3 (12 t/ha vermicompost) performed best followed by T6 (12 t/ha compost) over T0 (control). However, in post-harvest soil except soil reaction (pH); electrical conductivity (EC), organic carbon (OC), available N, P, K, S, Ca, Mg, Na, Fe and Zn significantly increased for T3 (12 t ha-1 vermicompost) than T1, T2, T4, T5, T6 and T0. Dhaka Univ. J. Biol. Sci. 28(1): 121-129, 2019 (January)


Soil Systems ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 28
Author(s):  
J. Bernhard Wehr ◽  
Gunnar Kirchhof

International collaboration on agronomy projects often requires the shipment of soil samples between countries to conduct analyses. However, quarantine regulations in numerous countries restrict the importing of soil samples unless they are sterilized, or analysis is carried out only in quarantine facilities, which greatly increases cost. Yet, sterilization is only an option if it does not change the soil properties. There is conflicting information about the effect of irradiation on soil chemical properties. To assess the effect of gamma irradiation on some soil chemical properties, one hundred randomly selected air-dried (40 °C) soil samples were split into two samples. One sample was left untreated and the other sample was irradiated with 50 kGy as prescribed by Australian biosecurity regulations. Commonly measured agronomic soil chemical properties were then measured and results from the non-irradiated samples were compared to the irradiated samples. The results show no effect of irradiation on soil cation exchange capacity, exchangeable cations, total carbon and nitrogen content, and DTPA-extractable Zn. Small (<5%) but statistically significant effects of irradiation were observed for pH (1:5 water), electric conductivity (EC1:5), DTPA-extractable Cu, Fe and Mn, and Colwell P. The irradiation effects on Fe were greater in the topsoil than subsoil. Considering that irradiation-induced changes to soil chemical properties were below 5%, gamma irradiation can be considered a suitable method to sterilize air-dried soil to meet import requirements, without affecting the interpretation of soil fertility reports.


2020 ◽  
Vol 10 (2) ◽  
pp. 110
Author(s):  
MADE KRISNANDA ADI SAPUTRA ◽  
KETUT DHARMA SUSILA ◽  
TATI BUDI KUSMIYARTI

Effect of Some Fertilizer Formulas on Soil Chemical Properties and Yield of Green Mustard (Brassica juncea L.) in Subak Tegal Lantang, West Denpasar District. The aims of this study is to determine the effect of several fertilizer formulas on soil chemical properties and yield of green mustard (Brassica juncea L.) in Subak Tegal Lantang, West Denpasar District. This study used a Randomized Block Design (RBD) consisting of 6 treatments including controls and repeated 4 times with a total of 24 treatment plots. Fertilization treatment consists of three types of fertilizers, namely organic fertilizer, inorganic fertilizer, and biofertilizer. The fertilizer formula tested consisted of P0 = control (without fertilizer), P1= 5 tons of compost ha-1 + 300kg Phonska ha-1 + 200kg Urea ha-1, P2= 5 tons of compost ha-1 + 300kg Phonska ha-1 + 200kg Urea ha-1 + biofertilizer (1 cc / liter water / plot), P3= 10 tons of compost ha-1 + 300kg Phonska ha-1 + 200kg Urea ha-1, P4= 10 tons of compost ha-1 + 300kg Phonska ha-1 + 200kg Urea ha-1 + biofertilizer (1 cc / liter of water / plot), P5= biofertilizer with a concentration of 1 cc / liter of water / plot. The data from the observed parameters then analyzed statistically using analysis of variance (Anova) to determine the significance of the treatment. If it has a significant effect on the parameters observed, then it will be followed by the LSD test at the 5% real level. The results of study showed that the fertilizer formula treatment had a very significant effect on organic-C (P <0,01) and significantly affected the plant fresh weight (P <0,05), but had no significant effect on the acidity (pH), total-N, available-K, available-P, cation exchange capacity, base saturation, plant height, number of leaves, and plant dry weight. The P4 fertilizer formula gave the highest increase in soil organic-C content significantly by 2.99% or an increase of 66% compared to the control and gave the highest yield of fresh greens mustard by 23.64 tons ha-1.


2019 ◽  
Vol 70 (7) ◽  
pp. 2371-2374 ◽  
Author(s):  
Lucian Dinca ◽  
Ion Chisalita ◽  
Ilie-Cosmin Cantar

The present paper characterizes the soils from Romania�s West Plain from a chemical property point of view, based on data from forest management plans. As such, for each forest district, soil samples from characteristic forest areas are gathered once at ten years and then analyzed. In this manner, soil reaction, base saturation degree, total cationic exchange capacity, humus content and total nitrogen where analyzed and compared with results of soil analysis from other Romanian areas.


Sign in / Sign up

Export Citation Format

Share Document