scholarly journals Evaluating the energy storage capabilities of forklift actuator

Author(s):  
Dmitriy Mishchuk ◽  
Euvgen Mishchuk ◽  
Maxim Balaka

Energy saving in construction and logistics is a topical and open issue today. Forklifts are one of the main self-propelled means of mechanization of warehouses, in which the effect of energy recovery can be applied. This is due to the peculiarity of such systems that operate in overclocking and braking modes. The purpose of this work is to study the energy consumption in the drive system of the loader based on the analysis of the sequence diagram of its operation for given sections of movement. Methodology. The equation of traction balance of a wheeled machine is used to estimate energy consumption at given sections of the load movement. Determination of the kinematic parameters of the loader system with the load is determined from the condition of maximum traction. Results. The mass characteristics of the system, speed of movement, characteristics of the road surface contribute to the formation of the energy return by the system of the loader in the process of its braking. Increasing operating speeds will have a positive effect on energy savings in energy storage systems. Analysis of energy consumption during the operation of the loader shows that in the process of its operation you can effectively store from 30 to 70% of energy. Originality. This study uses an engineering assessment approach that will be useful for practical applications in the design of such systems. Practical value. In this study, the sequence diagram of the energy consumption of a forklift when working with loads of 2000 kg, 1000 kg and 500 kg is essential. The sequence diagram method is simple and can therefore be easily implemented in forklift control systems to enable energy recovery systems.

Author(s):  
K. H. Khan ◽  
M. G. Rasul ◽  
M. M. K. Khan

This paper is concerned with the feasibility study and evaluation of an energy savings opportunity in buildings energy management using co-generation coupling with thermal energy storage. Both the technical and economical feasibility is presented first for the co-generation and then compared with the co-generation using thermal energy storage. On-site co-generation with double effect absorption chiller provides a potential of at least 13% peak demand reduction and about 16% savings in energy consumption. It provides an internal rate of return (IRR) greater than 21% but saving potential is limited by the low demand of co-generated chilled water within the community of the institution. Thermal energy storage coupling with co-generation offers a simple and economically more attractive approach for maximizing the utilization of co-generated chilled water and shows 23% reduction in peak demand and 21% savings in energy consumption. It provides higher IRR, greater than 25%.


2019 ◽  
Vol 10 (2) ◽  
pp. 39
Author(s):  
Wei Zhang ◽  
Jue Yang ◽  
Wenming Zhang ◽  
Fei Ma

When the pure electric mining dump truck is working, it mainly ascends the slope at full load and descends the slope at no load. The loading state of the vehicle and the slope of the road will directly affect its axle load distribution and braking force distribution. In this paper, the slope dynamics analysis of the pure electric double-axle four-wheel drive mining dump truck was carried out. Based on the regenerative braking priority strategy, four regenerative braking control methods were developed based on the Matlab/Simulink platform and ADVISOR 2002 vehicle simulation software to study the ability of regenerative braking energy recovery and its impact on vehicle economic performance. The simulation results show that the regenerative braking priority control strategy used can maximize the regenerative braking force of the vehicle; the regenerative energy recovery capability of pure electric mining dump truck is proportional to the regenerative braking force that can be provided during braking; the two-axis braking strategy based on the I curve and the β line can make full use of the front and rear axle regenerative braking force when the braking intensity is large, and recover more braking energy; under road drive cycle, the single-axis braking force required to the braking strategy based on the maximized front axle braking force is the largest among all strategies, the motor braking efficiency is the highest, and the recovered braking energy is the most. For the studied drive cycle, the regenerative braking technology can reduce the vehicle energy consumption by 1.06%–1.56%. If appropriate measures are taken to improve the road surface condition and reduce the rolling resistance coefficient from f = 0.04 to f = 0.02, the regenerative braking technology can further reduce the vehicle energy consumption to 4.76%–5.73%. The economic performance of the vehicle is improved compared to no regenerative braking. In addition, the vehicle loading state and the driving motor working efficiency also directly affect the regenerative braking energy recovery capability of the pure electric mining truck.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
A. Lazić ◽  
V. Larsson ◽  
Å. Nordenborg

The objective of this work is to decrease energy consumption of the aeration system at a mid-size conventional wastewater treatment plant in the south of Sweden where aeration consumes 44% of the total energy consumption of the plant. By designing an energy optimised aeration system (with aeration grids, blowers, controlling valves) and then operating it with a new aeration control system (dissolved oxygen cascade control and most open valve logic) one can save energy. The concept has been tested in full scale by comparing two treatment lines: a reference line (consisting of old fine bubble tube diffusers, old lobe blowers, simple DO control) with a test line (consisting of new Sanitaire Silver Series Low Pressure fine bubble diffusers, a new screw blower and the Flygt aeration control system). Energy savings with the new aeration system measured as Aeration Efficiency was 65%. Furthermore, 13% of the total energy consumption of the whole plant, or 21 000 €/year, could be saved when the tested line was operated with the new aeration system.


Author(s):  
Rouwei Yan ◽  
Biao Xu ◽  
K. P. Annamalai ◽  
Tianlu Chen ◽  
Zhiming Nie ◽  
...  

Background : Renewable energies are in great demand because of the shortage of traditional fossil energy and the associated environmental problems. Ni and Se-based materials are recently studied for energy storage and conversion owing to their reasonable conductivities and enriched redox activities as well as abundance. However, their electrochemical performance is still unsatisfactory for practical applications. Objective: To enhance the capacitance storage of Ni-Se materials via modification of their physiochemical properties with Fe. Methods: A two-step method was carried out to prepare FeNi-Se loaded reduced graphene oxide (FeNi-Se/rGO). In the first step, metal salts and graphene oxide (GO) were mixed under basic condition and autoclaved to obtain hydroxide intermediates. As a second step, selenization process was carried out to acquire FeNi-Se/rGO composites. Results: X-ray diffraction measurements (XRD), nitrogen adsorption at 77K, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out to study the structures, porosities and the morphologies of the composites. Electrochemical measurements revealed that FeNi-Se/rGO notably enhanced capacitance than the NiSe/G composite. This enhanced performance was mainly attributed to the positive synergistic effects of Fe and Ni in the composites, which not only had influence on the conductivity of the composite but also enhanced redox reactions at different current densities. Conclusion: NiFe-Se/rGO nanocomposites were synthesized in a facile way. The samples were characterized physicochemically and electrochemically. NiFeSe/rGO giving much higher capacitance storage than the NiSe/rGO explained that the nanocomposites could be an electrode material for energy storage device applications.


2021 ◽  
Vol 13 (11) ◽  
pp. 5848
Author(s):  
Isaías Gomes ◽  
Rui Melicio ◽  
Victor M. F. Mendes

This paper presents a computer application to assist in decisions about sustainability enhancement due to the effect of shifting demand from less favorable periods to periods that are more convenient for the operation of a microgrid. Specifically, assessing how the decisions affect the economic participation of the aggregating agent of the microgrid bidding in an electricity day-ahead market. The aggregating agent must manage microturbines, wind systems, photovoltaic systems, energy storage systems, and loads, facing load uncertainty and further uncertainties due to the use of renewable sources of energy and participation in the day-ahead market. These uncertainties cannot be removed from the decision making, and, therefore, require proper formulation, and the proposed approach customizes a stochastic programming problem for this operation. Case studies show that under these uncertainties and the shifting of demand to convenient periods, there are opportunities to make decisions that lead to significant enhancements of the expected profit. These enhancements are due to better bidding in the day-ahead market and shifting energy consumption in periods of favorable market prices for exporting energy. Through the case studies it is concluded that the proposed approach is useful for the operation of a microgrid.


2021 ◽  
Vol 11 (6) ◽  
pp. 2735
Author(s):  
Ernesto Olvera-Gonzalez ◽  
Martín Montes Rivera ◽  
Nivia Escalante-Garcia ◽  
Eduardo Flores-Gallegos

Artificial lighting is a key factor in Closed Production Plant Systems (CPPS). A significant light-emitting diode (LED) technology attribute is the emission of different wavelengths, called light recipes. Light recipes are typically configured in continuous mode, but can also be configured in pulsed mode to save energy. We propose two nonlinear models, i.e., genetic programing (GP) and feedforward artificial neural networks (FNNs) to predict energy consumption in CPPS. The generated models use the following input variables: intensity, red light component, blue light component, green light component, and white light component; and the following operation modes: continuous and pulsed light including pulsed frequency, and duty cycle as well energy consumption as output. A Spearman's correlation was applied to generate a model with only representative inputs. Two datasets were applied. The first (Test 1), with 5700 samples with similar input ranges, was used to train and evaluate, while the second (Test 2), included 160 total datapoints in different input ranges. The metrics that allowed a quantitative evaluation of the model's performance were MAPE, MSE, MAE, and SEE. Our implemented models achieved an accuracy of 96.1% for the GP model and 98.99% for the FNNs model. The models used in this proposal can be applied or programmed as part of the monitoring system for CPPS which prioritize energy efficiency. The nonlinear models provide a further analysis for energy savings due to the light recipe and operation light mode, i.e., pulsed and continuous on artificial LED lighting systems.


2021 ◽  
pp. 0734242X2110039
Author(s):  
Federico Sisani ◽  
Amani Maalouf ◽  
Francesco Di Maria

The environmental and energy performances of the Italian municipal solid waste incineration (MSWI) system was investigated by a life cycle assessment approach. On average the 39 MSWIs operating in Italy in 2018 treated about 6,000,000 Mg of residual municipal solid waste (RMSW) recovering on average from 448 kWh Mg−1 RMSW to 762 kWh Mg−1 RMSW of electricity and from 732 kWh Mg−1 RMSW to 1102 kWh Mg−1 RMSW of heat. The average quantity of CO2eq Mg−1 RMSW emitted ranged from about 800 up to about 1000 depending on the size and on the energy recovery scheme of the facility. Avoided impacts (i.e., negative values) were detected for the kg PM2,5eq Mg−1 RMSW and for human health (disability-adjusted life year Mg−1 RMSW). The determination of the hybrid primary energy index (MJ Mg−1 RMSW) indicated that mainly large size facilities and those operating according to a power and heat energy recovery scheme are effectively able to replace other primary energies by the exploitation of the lower heating values of the RMSW.


Sign in / Sign up

Export Citation Format

Share Document