scholarly journals Chlorophyll and Carotenoid Level Comparisons of Pigeon Orchid (Dendrobium crumenatum) in Water and Light Stress Treatment

2021 ◽  
Vol 5 (1) ◽  
pp. 44
Author(s):  
Febri Yuda Kurniawan ◽  
Dea Evani Amelia

Environtmental conditions in which plants grow are always changing which when exceeding the tolerance limit will result in stress. Water and light stress affect the pigment content of photosynthesis such as chlorophyll and carotenoids. <em>Dendrobium crumenatum </em>is one of orchid species that is judged to be resistant to various types of environtmental conditions, so it can grow well in any environtment. This research aims to determine the comparison of chlorophyll and carotenoid levels of <em>D. crumenatum </em>from Bantul lowland population, Special Region of Yogyakarta which is given water and light stress treatment. The methods used are extraction with alcohol solvent (96%) and absorbtion level measurements with spectrophotometry at wavelengths 470, 645, and 663 nm. The highest chlorophyll a level contained in the leaves of <em>D. crumenatum </em>which is given water stress treatment, highest chlorophyll b level in control plant, highest total chlorophyll in the leaves which is given water stress treatment, and highest carotenoid level found in the leaves which is given light stress treatment.

2020 ◽  
Vol 22 (1) ◽  
pp. 221
Author(s):  
Joanna Wójtowicz ◽  
Adam K. Jagielski ◽  
Agnieszka Mostowska ◽  
Katarzyna B. Gieczewska

The origin of chlorophyll b deficiency is a mutation (ch1) in chlorophyllide a oxygenase (CAO), the enzyme responsible for Chl b synthesis. Regulation of Chl b synthesis is essential for understanding the mechanism of plant acclimation to various conditions. Therefore, the main aim of this study was to find the strategy in plants for compensation of low chlorophyll content by characterizing and comparing the performance and spectral properties of the photosynthetic apparatus related to the lipid and protein composition in four selected Arabidopsis ch1 mutants and two Arabidopsis ecotypes. Mutation in different loci of the CAO gene, viz., NW41, ch1.1, ch1.2 and ch1.3, manifested itself in a distinct chlorina phenotype, pigment and photosynthetic protein composition. Changes in the CAO mRNA levels and chlorophyllide a (Chlide a) content in ecotypes and ch1 mutants indicated their significant role in the adjustment mechanism of the photosynthetic apparatus to low-light conditions. Exposure of mutants with a lower chlorophyll b content to short-term (1LL) and long-term low-light stress (10LL) enabled showing a shift in the structure of the PSI and PSII complexes via spectral analysis and the thylakoid composition studies. We demonstrated that both ecotypes, Col-1 and Ler-0, reacted to high-light (HL) conditions in a way remarkably resembling the response of ch1 mutants to normal (NL) conditions. We also presented possible ways of regulating the conversion of chlorophyll a to b depending on the type of light stress conditions.


2012 ◽  
Vol 30 (3) ◽  
pp. 137-145 ◽  
Author(s):  
Bruce L. Dunn ◽  
Janet C. Cole ◽  
Mark E. Payton

Experiments were conducted to evaluate potential means for reducing moisture stress in nine herbaceous and woody ornamental species. In Expt. 1 (2009), a water only control treatment and the antitranspirant Stasis™ at two different rates were applied as a drench application before inducing drought stress in the greenhouse by withholding water for two weeks. No significant differences in visual ratings in relation to plant quality were detected among treatments 5 days after application for any species. At 10 days after treatment, visual ratings were better for Veronica at the lower Stasis™ rate, Hibiscus at the low and higher Stasis™ rate, and Weigela at lower and higher Stasis™ rate compared to no Stasis™. At 15 days after treatment, visual ratings were worse for Coreopsis, Rudbeckia, and Salvia at both low and high Stasis™ rates; but, were better for Hibiscus and Weigela at the lower and higher Stasis™ rates compared to the no Stasis™ treatment. In Expt. 2 (2010), the antitranspirants Stasis™ and Root-Zone were evaluated along with a no antitranspirant and well-watered control treatments at single rates. No significant differences in visual ratings existed among treatments five days after application for any species. At 10 days after treatment, visual ratings were higher for Coreopsis, Forsythia, Nandina, and Weigela with Stasis™ or Root-Zone compared to no antitranspirant application. Visual ratings for Rudbeckia and Salvia with Stasis™, and Euonymus with Root-Zone were also better than the stress treatment at 10 days after treatment. At 15 days after treatment, visual ratings were higher for Coreopsis and Salvia with Stasis™ compared to the stress treatment. Rudbeckia, Euonymus, and Weigela with Stasis™ or Root-Zone and Nandina with Root-Zone all had better visual ratings than the stress treatment. Evapotranspiration was not reduced for any Stasis™ or Root-Zone treatment for any species in either experiment compared to control stress treatments.


1994 ◽  
Vol 119 (5) ◽  
pp. 1006-1013 ◽  
Author(s):  
J. Lorene Embry ◽  
Eugene A. Nothnagel

Photosynthetic light harvesting was investigated under low-light stress conditions relevant to the problem of interior longevity of potted ornamental plants. Comparisons of leaf pigment levels and chlorophyll fluorescence excitation spectra were made for `Gutbier V-10 Amy' poinsettia (Euphorbia pulcherrima Willd.), which has poor interior longevity, and `Eckespoint Lilo' poinsettia, which has superior interior longevity. The results show that `Eckespoint Lilo' had higher total chlorophyll content per leaf area and lower chlorophyll a: chlorophyll b ratio than `Gutbier V-10 Amy'. In low-light stress, `Eckespoint Lilo' retained its chlorophyll or even accumulated higher levels than in high light, while `Gutbier V-10 Amy' did not exhibit higher chlorophyll retention in low light. Both cultivars acclimatized to low-light stress by decreasing the chlorophyll a: chlorophyll b ratio, and this acclimatization was evident sooner in younger, outer-canopy leaves above the pinch than in older leaves below the pinch. Both cultivars also increased the chlorophyll: carotenoid ratio in low light. These changes in pigment composition, which were essentially structural changes, were reflected in functional changes in light harvesting, as assessed by measurements of chlorophyll fluorescence excitation spectra.


2021 ◽  
pp. 339-355
Author(s):  
Michel Ruiz Sánchez ◽  
Juan Adriano Cabrera Rodríguez ◽  
José M. Del'Anico Rodríguez ◽  
Yaumara Muñoz Hernández ◽  
Ricardo Aroca Álvarez ◽  
...  

Introduction. The water deficit negatively affects rice plants and limits their productivity. Arbuscular mycorrhizal symbiosis has been shown to improve rice productivity in drought conditions. Objective. To propose a new categorization for the state of water stress of rice plants inoculated (AM) or not with arbuscular mycorrhizal fungi (nonAM) and exposed to water deficit (D) during the vegetative phase. Materials and methods. The experiment was carried out under controlled greenhouse conditions during the years 2009 and 2010 at the Zaidín Experimental Station, Granada, Spain. The rice transplantation was carried out fourteen days after germination to pots with a 5 cm water sheet and at 30, 40, or 50 days after transplantation (DAT) they were subjected to water deficit during a period of 15 days, at which time the water sheet was restored. The control treatment was maintained throughout the cycle under flood conditions (ww). Evaluations were performed at 45, 55, 65 DAT and after recovery at 122 DAT. The harvest was carried out at 147 DAT. Results. The reduction in water supply demonstrated water stress in the plants, manifested by the decrease in the water potential of the leaves. Arbuscular mycorrhizal symbiosis always favored the water status of the plant. Four categories of water status of plants were proposed taking into account water potentials and agricultural yield: no stress (≥-0.67 MPa); light stress (<-0.67 to -1.20 MPa); moderate stress (<-1.20 to -1.60 MPa), and severe stress (<-1.60 MPa). Conclusion. The categorization of stress due to the water deficit is a tool of high scientific value for the specific case of rice, since this plant has the capacity to adapt to tolerate the presence of a sheet of water throughout its biological cycle and is highly susceptible to water deficit.


Weed Science ◽  
1983 ◽  
Vol 31 (3) ◽  
pp. 410-414 ◽  
Author(s):  
Rolando T. Cruz ◽  
John C. O'Toole ◽  
Keith Moody

Twenty days after rice (Oryza sativaL. ‘IR28’) emergence, water was withheld from the stress treatment for 20 days while the control was kept well-watered by furrow irrigation. In the control plots, rice leaf water potential at 0800 hours was –5.5 bars and leaf length 30 cm on the 12th day of stress. In the stress treatment, leaf water potential decreased to –8 bars and leaf length to 20 cm, when no weeds competed with rice. With maximum weed competition, rice leaf water potential decreased to –18 bars and leaf length to 15.5 cm. on the 20th day of stress, dawn (0600 h) leaf water potential of rice in the stress treatment was reduced from –8 bars when no weeds competed with rice to –19 bars when competition was maximum. The weed species had higher water potential values than the rice in both control and water-stress treatments.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 76
Author(s):  
Mdungazi K Maluleke ◽  
Shadung J Moja ◽  
Melvin Nyathi ◽  
David M Modise

The nutrient concentration of most crops depends on factors such as amount of water, growing environment, sunlight, and soil types. However, the factors influencing nutrient concentration of African horned cucumber fruit are not yet known. The objective of the study was to determine the effect of different water stress levels, soil types, and growing environments on the nutrient concentration of African horned cucumber fruit. Freeze-dried fruit samples were used in the quantification of β-carotene and total soluble sugars. The results demonstrated that plants grown under the shade net, combined with severe water stress level and loamy soil, had increased total soluble sugars (from 8 to 16 °Brix). Under the shade-net environment, the combination of moderate water stress level and loamy soil resulted in increased crude protein content (from 6.22 to 6.34% °Brix). In addition, the severe water stress treatment combined with loamy soil, under greenhouse conditions, resulted in increased β-carotene content (from 1.5 to 1.7 mg 100 g−1 DW). The results showed that African horned cucumber fruits are nutrient-dense when grown under moderate water stress treatment on the loamy or sandy loam substrate in the shade-net and open-field environments.


2016 ◽  
Vol 8 (1) ◽  
pp. 81-84
Author(s):  
Eleazar LUGO-CRUZ ◽  
Francisco ZAVALA-GARCÍA ◽  
Francisco Javier PICÓN-RUBIO ◽  
Vania URÍAS-ORONA ◽  
Humberto RODRÍGUEZ-FUENTES ◽  
...  

In México, around 82% of the total production of maize is grown under rainfed conditions leading to a water stress environment which affects physiologic and biochemical process of the plant. Maize bran is a composited plant material consisting mainly in aleurone layer, testa and pericarp; the cell walls of these tissues are composed of proteins, non-starch polysaccharides, phenolic acids and lignin which are potential bioactive substances for human nutrition. In this research it was investigated the effect of water stress on cell wall components in the bran of three genotypes of maize by applying irrigation and water stress treatments. The content of protein, lignin, arabinoxylans, total phenols and phenolic acids was performed in the bran of ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ genotypes. Water stress applied through grain development stage increased protein levels of ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ in 4.05, 16.13 and 0.40% respectively. Respecting to lignin content, water stress increased levels at 1.28, 2.26 and 4.24% for ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ, respectively. Arabinoxylans content also increased in water stress treatment at levels of 1.28, 2.26 and 3.66% in ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ. On the other hand, water stress treatment decreased the levels of total phenols and hydroxycinnamic acids in the three maize hybrids analysed. Reduction of total phenols was 35.34, 5.59 and 31.57% for ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ, respectively. In addition, the levels of t-ferulic, c-ferulic and p-coumaric acids decreased 17.74, 23.93, 29.83% in ʽCebúʼ, 8.92, 8.62, 24.03% in ʽDK2027ʼ and 13.66, 11.03, 10.38% in ʽDK2034ʼ respectively.


Author(s):  
M. D. H. Dewdar

This study aimed to investigate the performance of three cotton (Gossypium barbadense L.) genotypes as affected by drought stress at three irrigation regimes; 14 (S-0), 21(S-1) and 28 (S-2) days that were started after the first irrigation. To achieve this goal, a field experiment was conducted as split block design at the Experimental Farm of the Faculty of Agriculture, El-Fayoum Univ. The results indicated that the irrigation regimes mean squares of combined data were highly significant for earliness traits, also as well as yield and yield components.  Most of fiber properties were not affected by water stress conditions. Significant differences were found among the non- stress (S-0) and the stress treatments (S-1 and S-2) for mean performances of the three earliness traits. Treatment S-2 led to significant decrease in yield and yield components compared to S-0. The results showed that Giza 85 variety gave the highest fiber length, fiber strength and was finer cultivars having the lower micronaire values. The interaction between genotypes and stress treatments was significant for most traits.G1,G2 and G3 cotton varieties  exhibited highest seed cotton yield kg ha-1 (yield potential) in the non- stress treatment (S-0).  Giza 90 variety outyielded the other two varieties under stress treatment (S-2) compared to those of Giza 85 and Giza 83. The superiority of Giza 90 variety could be attributed to its high yield components., while Giza 90 was relatively stress susceptible and similar trend of those obtained using data of relative productivity (%) which confirm that the genotype Giza 83 and Giza 85 are more drought tolerance and could be used as sources of drought stress tolerance in breeding programs and tolerance to water stress conditions.


Sign in / Sign up

Export Citation Format

Share Document