Electron backscatter diffraction study of changes in the grain structure of Ni3Fe ordering alloy upon an A1 → L12 phase transition

2014 ◽  
Vol 78 (8) ◽  
pp. 807-810
Author(s):  
E. V. Konovalova ◽  
O. B. Perevalova ◽  
N. A. Koneva ◽  
K. V. Ivanov ◽  
E. V. Kozlov
Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


2007 ◽  
Vol 546-549 ◽  
pp. 885-888
Author(s):  
Yu Xuan Du ◽  
Xin Ming Zhang ◽  
Ling Ying Ye ◽  
Zhi Hui Luo

A novel shear-deformation technique, named ‘shear pressing’ (SP), was developed for fabrication of plate-shaped fine grained metallic materials. The principle of SP is that a material is subjected to shear deformation by utilizing pressing with inclined plane dies. A micrometer order grain structure was obtained in an Al-Mg-Li alloy at strain of ε = -2.3 by utilizing this technique. The grain refinement sequences during pressing were examined by electron backscatter diffraction. The enhancement of grain refinement to the Al-Mg-Li alloy was compared with plane strain compression (PSC) at similar strains. The effect of the shear strain on the accelerated grain refining during compressing has been discussed.


2015 ◽  
Vol 21 (6) ◽  
pp. 1387-1397 ◽  
Author(s):  
Leo T.H. de Jeer ◽  
Diego Ribas Gomes ◽  
Jorrit E. Nijholt ◽  
Rik van Bremen ◽  
Václav Ocelík ◽  
...  

AbstractTransmission electron backscatter diffraction (t-EBSD) was used to investigate the effect of dealloying on the microstructure of 140-nm thin gold foils. Statistical and local comparisons of the microstructure between the nonetched and nanoporous gold foils were made. Analyses of crystallographic texture, misorientation distribution, and grain structure clearly prove that during the dealloying manufacturing process of nanoporous materials the crystallographic texture is enhanced significantly with a clear decrease of internal strain, whereas maintaining the grain structure.


2007 ◽  
Vol 40 (6) ◽  
pp. 1183-1188 ◽  
Author(s):  
Cyril Cayron

A computer program calledARPGEwritten in Python uses the theoretical results generated by the computer programGenOVato automatically reconstruct the parent grains from electron backscatter diffraction data obtained on phase transition materials with or without residual parent phase. The misorientations between daughter grains are identified with operators, the daughter grains are identified with indexed variants, the orientations of the parent grains are determined, and some statistics on the variants and operators are established. Some examples with martensitic transformations in iron and titanium alloys were treated. Variant selection phenomena were revealed.


Sign in / Sign up

Export Citation Format

Share Document