Investigating the grain structure of Cu-Al and Cu-Mn alloys via electron backscatter diffraction and optical metallography

2014 ◽  
Vol 78 (4) ◽  
pp. 253-256
Author(s):  
E. V. Konovalova ◽  
O. B. Perevalova ◽  
N. A. Koneva ◽  
K. V. Ivanov ◽  
E. V. Kozlov
Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


2007 ◽  
Vol 546-549 ◽  
pp. 885-888
Author(s):  
Yu Xuan Du ◽  
Xin Ming Zhang ◽  
Ling Ying Ye ◽  
Zhi Hui Luo

A novel shear-deformation technique, named ‘shear pressing’ (SP), was developed for fabrication of plate-shaped fine grained metallic materials. The principle of SP is that a material is subjected to shear deformation by utilizing pressing with inclined plane dies. A micrometer order grain structure was obtained in an Al-Mg-Li alloy at strain of ε = -2.3 by utilizing this technique. The grain refinement sequences during pressing were examined by electron backscatter diffraction. The enhancement of grain refinement to the Al-Mg-Li alloy was compared with plane strain compression (PSC) at similar strains. The effect of the shear strain on the accelerated grain refining during compressing has been discussed.


2015 ◽  
Vol 21 (6) ◽  
pp. 1387-1397 ◽  
Author(s):  
Leo T.H. de Jeer ◽  
Diego Ribas Gomes ◽  
Jorrit E. Nijholt ◽  
Rik van Bremen ◽  
Václav Ocelík ◽  
...  

AbstractTransmission electron backscatter diffraction (t-EBSD) was used to investigate the effect of dealloying on the microstructure of 140-nm thin gold foils. Statistical and local comparisons of the microstructure between the nonetched and nanoporous gold foils were made. Analyses of crystallographic texture, misorientation distribution, and grain structure clearly prove that during the dealloying manufacturing process of nanoporous materials the crystallographic texture is enhanced significantly with a clear decrease of internal strain, whereas maintaining the grain structure.


2005 ◽  
Vol 880 ◽  
Author(s):  
Alice Bastos ◽  
Dierk Raabe ◽  
Stefan Zaefferer ◽  
Christopher Schuh

AbstractA Cobalt-20wt.% Nickel polycrystal produced by electrodeposition has been investigated in planar and cross sections using a high resolution scanning electron microscope. The local texture, grain size, amount of phase and grain boundaries, were characterized by Electron Backscatter Diffraction (EBSD). The average grain size perpendicular to the grain growth direction was 400 nm. Parallel to it, a pronounced bimodal grain structure was observed with grains reaching more than 10 μm and grains of approximately 800 nm diameter.


2013 ◽  
Vol 334-335 ◽  
pp. 161-166 ◽  
Author(s):  
Martin Vlach ◽  
Ivana Stulíková ◽  
Bohumil Smola ◽  
Hana Císařová ◽  
Tomáš Kekule ◽  
...  

The effect of hot extrusion at 350°C on microstructure, thermal, electrical and mechanical properties of the AlMnScZr alloy was studied. The samples of the cast and of the hot-extruded alloys were annealed from 20°C up to 600°C. Transmission and scanning electron microscopy and electron backscatter diffraction examinations of specimens quenched from temperatures of significant resistivity changes were used to identify microstructural processes responsible for these changes. The cast as well as hot-extruded alloy is characterized by a dispersion of fine coherent Al3Sc and/or Al3(Sc,Zr) particles, and furthermore the fine (sub) grain structure was observed in the hot-extruded alloy. Microhardness HV1 and resistivity values reflect different microstructure of the alloys accordingly. The distinct resistivity changes of the alloys are mainly caused by precipitation of Mn-containing particles. The apparent activation energy for the Al6Mn-phase precipitation in the hot-extruded alloy was also determined. The obtained results agree with those observed in the alloys prepared by powder metallurgy studied in our previous work.


1995 ◽  
Vol 403 ◽  
Author(s):  
D. J. Dingley ◽  
D. P. Field

AbstractAluminum thin films deposited onto silicon substrates coated with silicon dioxide or a layered structure of titanium and titanium nitride have been investigated using the combined techniques of electron backscatter diffraction and orientation imaging microscopy. By these methods the local texture and spatial distribution of texture components was established. It was observed that whereas the material exhibited an overall <111> texture with the in-plane direction <110> uniformly distributed, there were variations in the local texture and distribution of orientations with clustering of grains of similar orientation. Individual grains within the clusters were nearly perfect and varied in orientation by only a few degrees. The effective grain size differed greatly on whether the cluster size of similarly oriented grains or the diameter of individual grains within the cluster was considered to constitute the grain structure. No strong bias was found in favor of coincident site oriented grain pairs though in some cases the frequency of occurrence of low angle boundaries was less than is expected on a purely random basis. Additional experiments were carried out in order to establish the suitability of orientation imaging microscopy for microstructure characterization of interconnect lines in integrated semiconductor device technology.


2017 ◽  
Vol 50 (2) ◽  
pp. 349-356 ◽  
Author(s):  
David Kerr ◽  
Fei Long ◽  
Gladys Domizzi ◽  
Mark R. Daymond

Both the expected and an additional orientation relationship between α-Zr and δ-hydride in blistered zirconium alloys are explored through the reconstruction of the parent α-Zr phase from electron backscatter diffraction maps of δ-hydride. Parent and child variant relationships for the transformation are presented with the aim of reconstruction of the parent α-Zr grain structure and texture from orientation maps of the δ-hydride at varying distances from the blister centre in a recrystallized Zircaloy-4 sample. Up to 13% of the δ-hydride is found to be variants of the additional orientation relationship, the fraction of which decreases with increasing distance from the blister centre. Texture reconstructions by other experimental methods are accordingly suggested to incorporate the additional orientation relationship.


Sign in / Sign up

Export Citation Format

Share Document