Effectiveness of exogenous DNA transfer to chicken embryo cells in vitro and in vivo using retroviral vectors

2007 ◽  
Vol 33 (3) ◽  
pp. 180-182 ◽  
Author(s):  
N. A. Volkova ◽  
A. O. Tulyakova ◽  
L. A. Volkova ◽  
N. A. Zinov’eva ◽  
L. K. Ernst ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Didier Boucher ◽  
Ruvini Kariawasam ◽  
Joshua Burgess ◽  
Adrian Gimenez ◽  
Tristan E. Ocampo ◽  
...  

AbstractMaintenance of genomic stability is critical to prevent diseases such as cancer. As such, eukaryotic cells have multiple pathways to efficiently detect, signal and repair DNA damage. One common form of exogenous DNA damage comes from ultraviolet B (UVB) radiation. UVB generates cyclobutane pyrimidine dimers (CPD) that must be rapidly detected and repaired to maintain the genetic code. The nucleotide excision repair (NER) pathway is the main repair system for this type of DNA damage. Here, we determined the role of the human Single-Stranded DNA Binding protein 2, hSSB2, in the response to UVB exposure. We demonstrate that hSSB2 levels increase in vitro and in vivo after UVB irradiation and that hSSB2 rapidly binds to chromatin. Depletion of hSSB2 results in significantly decreased Replication Protein A (RPA32) phosphorylation and impaired RPA32 localisation to the site of UV-induced DNA damage. Delayed recruitment of NER protein Xeroderma Pigmentosum group C (XPC) was also observed, leading to increased cellular sensitivity to UVB. Finally, hSSB2 was shown to have affinity for single-strand DNA containing a single CPD and for duplex DNA with a two-base mismatch mimicking a CPD moiety. Altogether our data demonstrate that hSSB2 is involved in the cellular response to UV exposure.


1987 ◽  
Vol 7 (3) ◽  
pp. 1139-1147
Author(s):  
J W Ryder ◽  
J A Gordon

We have compared the tyrosine kinase activity of pp60c-src isolated from intact chicken embryo fibroblasts treated with micromolar sodium orthovanadate for 4 h and from untreated cells. We found an approximate 50% reduction in both autophosphorylation of pp60c-src and phosphorylation of casein when examined in the immune complex kinase assay. The reduction of in vitro enzymatic activity correlated with a vanadate-induced increase in in vivo phosphorylation of pp60c-src at the major site of tyrosine phosphorylation in the carboxyl-terminal half of the molecule and at serine in the amino-terminal half of the molecule. Our observations in vivo and those of Courtneidge in vitro (EMBO J. 4:1471-1477, 1985) suggest that vanadate may enhance a cellular regulatory mechanism that inhibits the activity of pp60c-src in normal cells. A likely candidate for this mechanism is phosphorylation at a tyrosine residue distinct from tyrosine 416, probably tyrosine 527 in the carboxyl-terminal sequence of amino acids unique to pp60c-src. The regulatory role, if any, of serine phosphorylation in pp60c-src remains unclear. The 36-kilodalton phosphoprotein, a substrate of pp60v-src, showed a significant phosphorylation at tyrosine after treatment of normal chicken embryo fibroblasts with vanadate. Assuming that pp60c-src is inhibited intracellularly by vanadate, either another tyrosine kinase is stimulated by vanadate (e.g., a growth factor receptor) or the 36-kilodalton phosphoprotein in normal cells is no longer rapidly dephosphorylated by a tyrosine phosphatase in the presence of vanadate.


1962 ◽  
Vol 115 (1) ◽  
pp. 245-251 ◽  
Author(s):  
Robert M. Dougherty ◽  
Herbert R. Morgan

Chick embryo fibroblasts infected in vitro with Rous sarcoma virus have properties similar to tumor cells when injected into virus-immune chickens. When such virus-transformed fibroblasts are injected into normal chickens, they apparently participate in the production of tumors independent of their release of virus and are thus apparently malignant in vivo.


2001 ◽  
Vol 75 (11) ◽  
pp. 4973-4983 ◽  
Author(s):  
Eugene V. Barsov ◽  
William S. Payne ◽  
Stephen H. Hughes

ABSTRACT We have designed and characterized two new replication-competent avian sarcoma/leukosis virus-based retroviral vectors with amphotropic and ecotropic host ranges. The amphotropic vector RCASBP-M2C(797-8), was obtained by passaging the chimeric retroviral vector RCASBP-M2C(4070A) (6) in chicken embryos. The ecotropic vector, RCASBP(Eco), was created by replacing theenv-coding region in the retroviral vector RCASBP(A) with the env region from an ecotropic murine leukemia virus. It replicates efficiently in avian DFJ8 cells that express murine ecotropic receptor. For both vectors, permanent cell lines that produce viral stocks with titers of about 5 × 106 CFU/ml on mammalian cells can be easily established by passaging transfected avian cells. Some chimeric viruses, for example, RCASBP(Eco), replicate efficiently without modifications. For those chimeric viruses that do require modification, adaptation by passage in vitro or in vivo is a general strategy. This strategy has been used to prepare vectors with altered host range and could potentially be used to develop vectors that would be useful for targeted gene delivery.


2011 ◽  
Vol 23 (1) ◽  
pp. 263
Author(s):  
F. Pereyra-Bonnet ◽  
A. Gibbons ◽  
M. Cueto ◽  
R. Bevacqua ◽  
L. Escobar ◽  
...  

Microinjection of DNA into the male pronucleus is a commonly used method to generate transgenic animals. However, it is only moderately efficient in several species because it requires proper male pronuclear visualisation, which occurs only in a narrow window of time in mice. The cytoplasmic microinjection of exogenous DNA (eDNA) is an alternative method that has not been fully investigated. Our objective was to evaluate if cytoplasmic microinjection of eDNA is capable of producing genetically modified embryos. In vitro and in vivo derived sheep embryos were cytoplasmically microinjected with pCX-EGFP previously incubated (5 min in a PVP droplet) with oolemma-cytoplasm fragments obtained from donor oocytes by microsurgery. A control group using microinjected plasmid alone was included in the in vivo procedure. For in vitro microinjection, IVF embryos were microinjected with circular plasmid with promoter (50 or 500 ng μL–1) or without promoter (50 ng μL–1) at 6 h after fertilization. The IVF was performed following (Brackett and Olliphant 1975 Biol. Reprod. 12, 260–274) with 15 × 106 spermatozoa mL–1, and presumptive zygotes were cultured in SOF. The expression of enhance green fluorescent protein (EGFP) was determined under blue light. For in vivo microinjection, embryos from superovulated sheep (by standard procedures) were recovered and microinjected with 50 ng μL–1 of linearized plasmid without promoter at 12 h after laparoscopic insemination with frozen semen (100 × 106 spermatozoa per sheep). Plasmid without promoter was used to avoid any possible cytotoxic effect produced by EGFP expression. The microinjection of IVF embryos with 50 ng μL–1 of plasmid was the best condition to produce embryos expressing eDNA (n = 96; 46.9% cleaved; 12.2% blastocysts; 53.0 and 4.1% of green embryos and blastocysts, respectively). Variables between the groups with or without promoter IVF were not statistically different (Fisher test: P < 0.05); however, when 500 ng μL–1 was microinjected, no blastocysts were obtained. In the in vivo embryo production group, 111 presumptive zygotes were microinjected (n = 37; with plasmid alone) from 16 donor sheep (11.5 ± 4.0 corpora lutea; 8.4 ± 4.8 presumptive zygotes recovered; 74.3% recovery rate). The mean time from injection to cleavage was 18.0 ± 4.5 h, and the percentage of cleavage and damage (due to the embryo injection) were >70% and <10%, respectively. Fifty-eight good quality embryos were transferred into the oviducts of 19 surrogate ewes; 12 of them are pregnant (63.1%). The presence of green IVF embryos demonstrates that eDNA was transported to the nucleus after cytoplasmic injection. We believe that the multi-fold increase (50- to 100-fold) in plasmid concentration compared with that used by others was the key step to our successful cytoplasmic microinjection. Accordingly, the new/old methodology described in this study provides an easy DNA construct delivery system of interest for the implementation of early reprogramming events. In addition, results obtained in the near future using in vivo cytoplasmic microinjection with high concentrations of eDNA could revalidate this technique for producing genetically modified large animals.


Mouse embryo cells induced to differentiate with the demethylating agent 5- azacytidine represent an excellent model system to investigate the molecular control of development. Clonal derivatives of 10T1/2 cells that have become determined to the myogenic or adipogenic lineages can be isolated from the multipotential parental line after drug treatment. These determined derivatives can be cultured indefinitely and will differentiate into end-stage phenotypes on appropriate stimulation. A gene called Myo D1, recently isolated from such a myoblast line, will confer myogenesis when expressed in 10T1/2 or other cell types (Davis et al. 1987). The cDNA for Myo D1 contains a large number of CpG sequences and the gene is relatively methylated in 10T1/2 cells and an adipocyte derivative, but is demethylated in myogenic derivatives. Myo D1 may therefore be subject to methylation control in vitro . On the other hand, preliminary observations suggest that Myo D1 is not methylated at CCGG sites in vivo so that a de novo methylation event may have occurred in vitro . These observations may have significance in the establishment of immortal cell lines and tumours.


2013 ◽  
Vol 87 (23) ◽  
pp. 12721-12736 ◽  
Author(s):  
Saumya Shree Gupta ◽  
Tobias Maetzig ◽  
Goedele N. Maertens ◽  
Azar Sharif ◽  
Michael Rothe ◽  
...  

Retroviral integrase (IN) proteins catalyze the permanent integration of proviral genomes into host DNA with the help of cellular cofactors. Lens epithelium-derived growth factor (LEDGF) is a cofactor for lentiviruses, including human immunodeficiency virus type 1 (HIV-1), and targets lentiviral integration toward active transcription units in the host genome. In contrast to lentiviruses, murine leukemia virus (MLV), a gammaretrovirus, tends to integrate near transcription start sites. Here, we show that the bromodomain and extraterminal domain (BET) proteins BRD2, BRD3, and BRD4 interact with gammaretroviral INs and stimulate the catalytic activity of MLV INin vitro. We mapped the interaction site to a characteristic structural feature within the BET protein extraterminal (ET) domain and to three amino acids in MLV IN. The ET domains of different BET proteins stimulate MLV integrationin vitroand, in the case of BRD2, alsoin vivo. Furthermore, two small-molecule BET inhibitors, JQ1 and I-BET, decrease MLV integration and shift it away from transcription start sites. Our data suggest that BET proteins might act as chromatin-bound acceptors for the MLV preintegration complex. These results could pave a way to redirecting MLV DNA integration as a basis for creating safer retroviral vectors.


2003 ◽  
Vol 8 (5) ◽  
pp. 796-803 ◽  
Author(s):  
Kanji Yamaguchi ◽  
Katsuhiko Itoh ◽  
Naoki Ohnishi ◽  
Yoshito Itoh ◽  
Christopher Baum ◽  
...  

2002 ◽  
Vol 283 (2) ◽  
pp. R331-R338 ◽  
Author(s):  
K. Ruijtenbeek ◽  
C. G. A. Kessels ◽  
E. Villamor ◽  
C. E. Blanco ◽  
J. G. R. De Mey

In the chicken embryo, acute hypoxemia results in cardiovascular responses, including an increased peripheral resistance. We investigated whether local direct effects of decreased oxygen tension might participate in the arterial response to hypoxemia in the chicken embryo. Femoral arteries of chicken embryos were isolated at 0.9 of incubation time, and the effects of acute hypoxia on contraction and relaxation were determined in vitro. While hypoxia reduced contraction induced by high K+ to a small extent (−21.8 ± 5.7%), contractile responses to exogenous norepinephrine (NE) were markedly reduced (−51.1 ± 3.2%) in 80% of the arterial segments. This effect of hypoxia was not altered by removal of the endothelium, inhibition of NO synthase or cyclooxygenase, or by depolarization plus Ca2+ channel blockade. When arteries were simultaneously exposed to NE and ACh, hypoxia resulted in contraction (+49.8 ± 9.3%). Also, relaxing responses to ACh were abolished during acute hypoxia, while the vessels became more sensitive to the relaxing effect of the NO donor sodium nitroprusside (pD2: 5.81 ± 0.21 vs. 5.31 ± 0.27). Thus, in chicken embryo femoral arteries, acute hypoxia blunts agonist-induced contraction of the smooth muscle and inhibits stimulated endothelium-derived relaxation factor release. The consequences of this for in vivo fetal hemodynamics during acute hypoxemia depend on the balance between vasomotor influences of circulating catecholamines and those of the endothelium.


Sign in / Sign up

Export Citation Format

Share Document