Synergistic Activity of Phenolic Compounds of Some Plants Against Bacteria

Author(s):  
Roaa M. H. Shoker

Medicinal plants produce great groups of secondary metabolites which are essential for medicine purpose, one of them phenolic compounds, antimicrobial activity of phenolic compounds which derivative from plants has been examined for several years. The phenolic extracts of Sesamum indicum and Pimpinella anisum seeds have antibacterial action against Gram positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), (Acinetobacter baumannii), and (Pseudomonas aeruginosa) (Proteus mirabilis). The current findings show that the synergistic impact of phenolic extracts from S. indicum and P. anisum is active against a variety of pathogenic bacteria, and that the synergistic effect for two plants is more antibacterial than phenolic extracts from one plant.  The results indicated Gram- negative (P. aeruginosa) more effected by plants, than Gram-negative (S. aureus) which have the lower effects. The results of HPLC indicated Sesame (S. indicum) have total concentration of phenolic compounds was (1313.7 µg/ml) higher than total concentration of phenolic compounds of Anise (P. anisum) (220.991 µg/ml), and have varied types of phenolic compounds were Pyrogallol, Gallic acid, Rutin, Kaempferol, Cinnamaldehyde, Qurctin, Eugenol, Lignan with different concentration. From this study may be conclusion Synergistic effect for two plants have more antibacterial than phenolic extracts of one plant, and Sesame (S. indicum) have higher antimicrobial activity than Anise (P. anisum).

2009 ◽  
Vol 64 (5-6) ◽  
pp. 339-342 ◽  
Author(s):  
Katarina Šavikin ◽  
Nebojša Menković ◽  
Gordana Zdunić ◽  
Tatjana Stević ◽  
Dragoja Radanović ◽  
...  

Methanolic extracts of flowers and leaves of Gentiana lutea L., together with the isolated compounds mangiferin, isogentisin and gentiopicrin, were used to investigate the antimicrobial activity of the plant. A variety of Gram-positive and Gram-negative bacteria as well as the yeast Candida albicans has been included in this study. Both extracts and isolated compounds showed antimicrobial activity with MIC values ranging from 0.12 - 0.31 mg/ml. Our study indicated that the synergistic activity of the pure compounds may be responsible for the good antimicrobial effect of the extracts. Quantification of the secondary metabolites was performed using HPLC


Author(s):  
Urjinlham R ◽  
Oyunbileg B ◽  
Anumandal O ◽  
Sainbileg P ◽  
Rentsenkhand Ts

Essential oils from aromatic plants of Ledum palustre L. and Mentha piperita L. were extracted using steam distillation and the antimicrobial effects were evaluated alone and in combinations against food-borne pathogens of Gram-positive and Gram-negative bacteria and food related-yeasts (Bacillus subtilis, Escherichia coli, Saccharomyces cerevisiae, Schizosaccharomyce spombe, and Geotrichum candidum). Essential oils from two aromatic plants used in this study showed the antimicrobial activity against bacteria and yeast, which was found to be concentration dependent. The effects of Ledum palustre L. and Mentha piperita L. plants essential oils against yeast and Gram-negative bacteria at concentrations of 0.5 ul/ml and 0.25 ul/ml extended lag phase or adaptation phase by 48 hours, respectively. Gram-positive bacteria were found to be susceptible to the studied two plants essential oils. When the effects of antimicrobial activity of two essential oils were tested in combination against bacteria and yeast in vitro, the MIC value was in the range of 0.125-0.5 ul/ml and showed synergistic activity against E.coli and additive values against B.subtilis and S.cerevisiae. 


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Ahmed Tafesh ◽  
Naim Najami ◽  
Jeries Jadoun ◽  
Fares Halahlih ◽  
Herbert Riepl ◽  
...  

Polyphenols or phenolic compounds are groups of secondary metabolites widely distributed in plants and found in olive mill wastewater (OMW). Phenolic compounds as well as OMW extracts were evaluatedin vitrofor their antimicrobial activity against Gram-positive (Streptococcus pyogenesandStaphylococcus aureus) and Gram-negative bacteria (Escherichia coliandKlebsiella pneumoniae). Most of the tested phenols were not effective against the four bacterial strains when tested as single compounds at concentrations of up to 1000 μg mL−1. Hydroxytyrosol at 400 μg mL−1caused complete growth inhibition of the four strains. Gallic acid was effective at 200, and 400 μg mL−1againstS. aureus, andS. pyogenes, respectively, but not against the gram negative bacteria. An OMW fraction called AntiSolvent was obtained after the addition of ethanol to the crude OMW. HPLC analysis of AntiSolvent fraction revealed that this fraction contains mainly hydroxytyrosol (10.3%), verbascoside (7.4%), and tyrosol (2.6%). The combinations of AntiSolvent/gallic acid were tested using the low minimal inhibitory concentrations which revealed that 50/100–100/100 μg mL−1caused complete growth inhibition of the four strains. These results suggest that OMW specific fractions augmented with natural phenolic ingredients may be utilized as a source of bioactive compounds to control pathogenic bacteria.


Author(s):  
Ranganathan Kapilan

Wide range of plant extracts are used for medicinal purposes as they are very cheap, efficient, harmless and do not cause any side effects. Spices are parts of different plants and they add special aroma and taste to the food preparations. The aim of the study was to determine the antimicrobial activity of some important naturally grown spices against gram positive and gram negative pathogenic bacteria. Antibacterial activity of the spices was tested against gram positive bacteria Bacillus pumilus, Bacillus cereus and Staphylococcus aureus and gram negative bacteria Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa using aqueous, ethanolic, methanolic and liquid nutrient extracts. Among all the extracts tested alcoholic extracts of Cardamom (Elettaria cardamom), clove (Eugenia caryophyllus) and lemongrass (Cymbopogoncitratus) showed maximum antimicrobial activity against gram negative bacteria while alcoholic extract of Cardamom (Elettaria cardamom) and lemongrass (Cymbopogoncitratus) showed maximum activity against gram positive bacteria. All the spices tested in this study proved that they have antibacterial activity and the maximum activity index (1.39) was exhibited by the ethanol extract of cardamom against E.coli.


Author(s):  
Walter Balansa ◽  
Stevy Imelda Murniati Wodi ◽  
Frets Jonas Rieuwpassa ◽  
Frans Gruber Ijong

Abstract. Balansa W, Wodi SIM, Rieuwpassa FJ, Ijong FG. 2020. Agelasines B, D and antimicrobial extract of Agelas sp. from Tahuna Bay, Sangihe Islands, Indonesia. Biodiversitas 21: 699-706. The alarming growth of antibiotic-resistant bacteria necessitates the discovery of new antibiotics including those for combating life-threatening ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp) and fish pathogenic bacteria. This study aimed to identify antimicrobial compounds from an extract of a marine sponge collected from Enepahembang coral reef, Sangihe Islands, North Sulawesi, Indonesia. The sponge was identified by DNA barcoding as Agelas sp. and its extract was evaluated against three ESKAPE bacteria (S. aureus, K. pneumoniae, and A. baumannii) and three fish pathogenic bacteria (A. hydrophila, Edwardsiella tarda and Vibrio parahaemolyticus), using the standard disk diffusion method. It showed moderate to strong antimicrobial activity against S. aureus (25.3 mm), K. pneumoniae (15.5 mm), A. baumannii (20.2 mm), A. hydrophila (20.5 mm), E. tarda (22.4 mm) and A. salmonicida (21.2 mm). The extract was isolated by chromatographic techniques (column chromatography, flash chromatography, and high-performance liquid chromatography). The structures and relative stereochemistry of the two compounds were elucidated by HRESIMS, 1D and 2D NMR data analysis as well as by comparison with reported values. Unfortunately, limited amount of the pure compounds prevented us from further evaluating their antimicrobial activity against the test bacteria. Nevertheless, the crude extract's strong antimicrobial activity, especially against the test Gram-negative bacteria, suggests the importance of this finding in light of the recent antimicrobial drug scarcity but rapid antimicrobial resistance and the emerging paradigm of antimicrobial drug modification, redirection and/or repurposing for discovering new antibiotics particularly against the life-threatening Gram-negative bacteria.


LWT ◽  
2019 ◽  
Vol 101 ◽  
pp. 236-245 ◽  
Author(s):  
Francisco Javier Leyva-Jimenez ◽  
Jesus Lozano-Sanchez ◽  
Isabel Borras-Linares ◽  
María de la Luz Cadiz-Gurrea ◽  
Elaheh Mahmoodi-Khaledi

2018 ◽  
Vol 30 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Vidmantas Bendokas ◽  
Antanas Šarkinas ◽  
Daiva Jasinauskienë ◽  
Nijolë Anisimovienë ◽  
Šarûnë Morkûnaitë-Haimi ◽  
...  

Abstract Phenolic compounds are widespread in berries and determine their antimicrobial activity. The aim of our study was to establish the amounts of phenolic compounds and the anthocyanin composition in berries of four Ribes species, and to evaluate the effect of berry extracts on the growth of common Gram-positive and Gram-negative bacteria, and also yeasts isolated from food processing plants. The phenolic content and anthocyanin composition were estimated spectrometrically and by HPLC, respectively. The highest amount of phenolic compounds, and also anthocyanins, was found in extracts of R. aureum ‘Corona’. The anthocyanin content was the lowest in berries of R. aureum Au Gs-5, with equal amounts of delphinidins and cyanidins. Delphinidins were predominant (68.6%) in berries of R. nigrum ‘Ben Tirran’, while cyanidins dominated in R. uva-crispa. The berry extracts of R. aureum Au Gs-5 and R. uva-crispa ‘Lûðiai’ had the largest growth-suppressing effect on yeasts and most of the bacteria tested. All of the berry extracts suppressed the growth of pathogenic and conditionally pathogenic bacteria. The industrially important Lactococcus lactis was the most resistant to the Ribes berry extracts. There was no correlation between the amount of anthocyanins in the extracts and their antimicrobial properties. Extracts with a lower anthocyanin–to-phenolics ratio more effectively inhibited the growth of bacteria.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1263
Author(s):  
Qi Zhang ◽  
Shang Chen ◽  
Xiaojia Liu ◽  
Wenhan Lin ◽  
Kui Zhu

The overuse of antibiotics and the scarcity of new drugs have led to a serious antimicrobial resistance crisis, especially for multi-drug resistant (MDR) Gram-negative bacteria. In the present study, we investigated the antimicrobial activity of a marine antibiotic equisetin in combination with colistin against Gram-negative bacteria and explored the mechanisms of synergistic activity. We tested the synergistic effect of equisetin in combination with colistin on 23 clinical mcr-1 positive isolates and found that 4 µg/mL equisetin combined with 1 µg/mL colistin showed 100% inhibition. Consistently, equisetin restored the sensitivity of 10 species of mcr-1 positive Gram-negative bacteria to colistin. The combination of equisetin and colistin quickly killed 99.9% bacteria in one hour in time-kill assays. We found that colistin promoted intracellular accumulation of equisetin in colistin-resistant E. coli based on LC-MS/MS analysis. Interestingly, equisetin boosted ROS accumulation in E. coli in the presence of colistin. Moreover, we found that equisetin and colistin lost the synergistic effect in two LPS-deficient A. baumannii strains. These findings suggest that colistin destroys the hydrophobic barrier of Gram-negative bacteria, facilitating equisetin to enter the cell and exert its antibacterial effect. Lastly, equisetin restored the activity of colistin in a G. mellonella larvae infection model. Collectively, these results reveal that equisetin can potentiate colistin activity against MDR Gram-negative bacteria including colistin-resistant strains, providing an alternative approach to address Gram-negative pathogens associated with infections in clinics.


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


Sign in / Sign up

Export Citation Format

Share Document