scholarly journals The cyclodextrin inclusion complex-containing biodegradable polymeric systems as drug carrier

Author(s):  
Trâm Trương Lê Bích

This article shows that the supramolecular micelle assemblies from PCL-b-P4VP block copolymers with α-CD via self-assembly of inclusion complexes in an aqueous solution. Dox encapsulation and the release at different pH of supramolecular micelle assemblies from poly (ε-caprolactone-block-4-vinylpyridine) (PCL-b-P4VP) block copolymers with α-CD showed excellent cytocompatibility. Dox was successfully loaded into the micelles with a loading content of 14.4% and loading efficiency of 28.9% by using UV-Vis spectroscopy (UV). The Dox loaded micelles showed lower cytotoxicity than free drugs, and could efficiently deliver and release the drug into human hepatocellular carcinoma (Hep-G2) cells as confirmed by confocal laser scanning microscopy (CLSM). These properties make the polymer micelles attractive as drug carriers for pharmaceutical applications.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Luca Barbieri ◽  
Ioritz Sorzabal Bellido ◽  
Alison J. Beckett ◽  
Ian A. Prior ◽  
Jo Fothergill ◽  
...  

AbstractIn this work, we introduce a one-step strategy that is suitable for continuous flow manufacturing of antimicrobial PDMS materials. The process is based on the intrinsic capacity of PDMS to react to certain organic solvents, which enables the incorporation of antimicrobial actives such as salicylic acid (SA), which has been approved for use in humans within pharmaceutical products. By combining different spectroscopic and imaging techniques, we show that the surface properties of PDMS remain unaffected while high doses of the SA are loaded inside the PDMS matrix. The SA can be subsequently released under physiological conditions, delivering a strong antibacterial activity. Furthermore, encapsulation of SA inside the PDMS matrix ensured a diffusion-controlled release that was tracked by spatially resolved Raman spectroscopy, Attenuated Total Reflectance IR (ATR-IR), and UV-Vis spectroscopy. The biological activity of the new material was evaluated directly at the surface and in the planktonic state against model pathogenic bacteria, combining confocal laser scanning microscopy, electron microscopy, and cell viability assays. The results showed complete planktonic inhibition for clinically relevant strains of Staphylococcus aureus and Escherichia coli, and a reduction of up to 4 orders of magnitude for viable sessile cells, demonstrating the efficacy of these surfaces in preventing the initial stages of biofilm formation. Our approach adds a new option to existing strategies for the antimicrobial functionalisation of a wide range of products such as catheters, wound dressings and in-dwelling medical devices based on PDMS.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 180 ◽  
Author(s):  
Jin Ah Kim ◽  
Dong Youl Yoon ◽  
Jin-Chul Kim

Since cancer cells are oxidative in nature, anti-cancer agents can be delivered to cancer cells specifically without causing severe normal cell toxicity if the drug carriers are designed to be sensitive to the intrinsic characteristic. Oxidation-sensitive liposomes were developed by stabilizing dioleoylphosphatidyl ethanolamine (DOPE) bilayers with folate-conjugated poly(hydroxyethyl acrylate-co-allyl methyl sulfide) (F-P(HEA-AMS)). The copolymer, synthesized by a free radical polymerization, was surface-active but lost its surface activity after AMS unit was oxidized by H2O2 treatment. The liposomes with F-P(HEA-AMS) were sensitive to H2O2 concentration (0%, 0.5%, 1.0%, and 2.0%) in terms of release, possibly because the copolymer lost its surface activity and its bilayer-stabilizing ability upon oxidation. Fluorescence-activated cell sorting (FACS) and confocal laser scanning microscopy (CLSM) revealed that doxorubicin (DOX)-loaded liposomes stabilized with folate-conjugated copolymers markedly promoted the transport of the anti-cancer drug to cancer cells. This was possible because the liposomes were readily translocated into the cancer cells via receptor-mediated endocytosis. This liposome would be applicable to the delivery carrier of anticancer drugs.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Zehua Liu ◽  
Shaoheng Tang ◽  
Zhiran Xu ◽  
Yingjun Wang ◽  
Xuan Zhu ◽  
...  

For preventing premature drug release in neutral environment and avoiding them being trapped into the endosomal/lysosomal system, we developed a novel iron silicate@liposome hybrid (ILH) formulation, which can be used as a carrier to transport doxorubicin (DOX) in a pH-sensitive manner and to escape from endosomal/lysosomal trapping through “proton-sponge” effect. The high intensity of photoacoustic signal fromin vitrophotoacoustic imaging (PAI) experiments suggests that it is a promising candidate for PAI agent, providing the potential for simultaneously bioimaging and cancer-targeting drug delivery. Cytotoxicity of our formulation toward tumor cells was remarkably higher than free DOX (48.4±7.7% and26.2±8.4%,P<0.001). Confocal laser scanning microscopy experiments showed the enhanced transportation and enrichment process of DOX in QSG-7703 cells. Taking together, we developed an easy approach to construct a multifunctional anticancer drug delivery/imaging system with a potency as a PAI agent. The strategy of combining drug carrier and imaging agent is an emerging platform for further construction of nanoparticle and may play a significant role in cancer therapy and diagnosis.


2008 ◽  
Vol 8 (6) ◽  
pp. 3085-3090 ◽  
Author(s):  
Akihiro Hayama ◽  
Tatsuhiro Yamamoto ◽  
Masayuki Yokoyama ◽  
Kumi Kawano ◽  
Yoshiyuki Hattori ◽  
...  

A novel technique was developed for the formation of ligand-targeted polymeric micelles that can be applicable to various ligands. For tumor-specific drug delivery, camptothecin (CPT)-loaded polymeric micelles were modified by folate to produce a folate-receptor-targeted drug carrier. Folate-linked PEG5000-distearoylphosphatidylethanolamine (folate-PEG5000-DSPE) was added when preparations of drug-loaded polymeric micelles, resulting in folate ligands exposed to the surface. Folate-modified CPT-loaded polymeric micelles (F-micelle) were evaluated by measuring cellular uptake using a flow cytometer, fluorescence microscopy, and confocal laser scanning microscopy, and by cytotoxicity measurement. The results revealed that F-micelle showed higher cellular uptake in KB cells over-expressing folate receptor (FR) and higher cytotoxicity compared with non-folate modified CPT-loaded polymeric micelles (plain micelles) in KB cells, but not in FR-negative HepG2 cells. This result indicated that polymeric micelles were successfully modified by the folate-linked lipid.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 462 ◽  
Author(s):  
Kim ◽  
Alle ◽  
Kim

Poly(hydroxyethyl acrylate-co-phenyl vinyl sulfide) (P(HEA-co-PVS)), as an oxidizable amphiphilic polymer, was prepared for the fabrication of an oxidation- and temperature-responsive micelle for the delivery of doxorubicin (DOX). The interfacial activity of H2O2-treated P(HEA-co-PVS) was significantly lower than that of the untreated variety, possibly because of the oxidization of PVS. P(HEA-co-PVS) exhibited a lower critical solution temperature (LCST) behavior and the LCST increased upon H2O2 treatment. The copolymer micelles, prepared by the dialysis method, were found to be round particles (less than 100 nm) on TEM micrograph. The release degree of Nile red loaded in the micelles was higher when the H2O2 concentration was higher, possibly because the micelles could be solubilized more readily at a higher H2O2 concentration. The release degree was more strongly dependent on the oxidizing agent concentration when the temperature was higher. DOX loaded in the micelles suppressed the in vitro growth of KB cells (a human cancer cell type originating from the cervix) much more effectively than DOX loaded in an unoxidizable control micelle and free DOX, possibly because the copolymer would undergo an increase in its LCST, lose its amphiphilic property, and the micelles would be disassembled. The DOX-loaded micelles were readily internalized into KB cells, as evidenced by flow cytometry (FACS) and confocal laser scanning microscopy (CLSM).


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1014 ◽  
Author(s):  
Vo Nguyen ◽  
Marie-Claire De Pauw-Gillet ◽  
Mario Gauthier ◽  
Olivier Sandre

Magnetic nanoparticles (MNPs) of magnetite (Fe3O4) were prepared using a polystyrene-graft-poly(2-vinylpyridine) copolymer (denoted G0PS-g-P2VP or G1) as template. These MNPs were subjected to self-assembly with a poly(acrylic acid)-block-poly(2-hydroxyethyl acrylate) double-hydrophilic block copolymer (DHBC), PAA-b-PHEA, to form water-dispersible magnetic polyion complex (MPIC) micelles. Large Fe3O4 crystallites were visualized by transmission electron microscopy (TEM) and magnetic suspensions of MPIC micelles exhibited improved colloidal stability in aqueous environments over a wide pH and ionic strength range. Biological cells incubated for 48 h with MPIC micelles at the highest concentration (1250 µg of Fe3O4 per mL) had a cell viability of 91%, as compared with 51% when incubated with bare (unprotected) MNPs. Cell internalization, visualized by confocal laser scanning microscopy (CLSM) and TEM, exhibited strong dependence on the MPIC micelle concentration and incubation time, as also evidenced by fluorescence-activated cell sorting (FACS). The usefulness of MPIC micelles for cellular radiofrequency magnetic field hyperthermia (MFH) was also confirmed, as the MPIC micelles showed a dual dose-dependent effect (concentration and duration of magnetic field exposure) on the viability of L929 mouse fibroblasts and U87 human glioblastoma epithelial cells.


2009 ◽  
Vol 24 (4) ◽  
pp. 1317-1321 ◽  
Author(s):  
Gang Liu ◽  
Jing Tian ◽  
Chen Liu ◽  
Hua Ai ◽  
Zhongwei Gu ◽  
...  

In the present study, we compared cytotoxicity and cell uptake of silica nanoparticles with four different surface coatings generated through layer-by-layer self-assembly. Rabbit mesenchymal stem cells (rMSCs) were labeled with silica nanoparticles of different coatings including poly(ethyleneimine) (PEI), poly(allylamine hydrochloride) (PAH), poly(anetholesulfonic acid, sodium salt) (PAS), and dextran sulfate. The MTT [3-(4, 5-dimethylthiazol-2)-2, 5-diphenyl-2H-tetrazolium bromide] test was performed to quantify the cell biocompatibility. The cellular uptake of those silica nanoparticles was determined by flow cytometry and confocal laser scanning microscopy. The results showed that all examined silica nanoparticles were stable in aqueous phase with high monodispersity. Labeled rMSCs are unaffected in their viability, apoptosis, and differentiation capacities. The silica nanoparticle-coated synthetic polycations such as PEI or PAH have higher cell internalization than negatively charged polyelectrolytes. The ability to control cell uptake of different particles may have applications in cell labeling, cell separation, and other biomedical applications.


2007 ◽  
Vol 35 (4) ◽  
pp. 794-796 ◽  
Author(s):  
S. Pujals ◽  
E. Sabidó ◽  
T. Tarragó ◽  
E. Giralt

Proline-rich cell-penetrating peptides, particularly the SAP (sweet arrow peptide), (VRLPPP)3, have been proposed to be useful intracellular delivery vectors, as a result of their lack of cytotoxicity combined with their capacity to be internalized by cells. A common limitation of the therapeutic use of peptides is metabolic instability. In general, peptides are quickly degraded by proteases upon entry into the bloodstream. The use of all-D-peptide derivatives is emerging as a fruitful strategy to circumvent this degradation problem. In this context, we report on the internalization behaviour, protease-resistance enhancement and self-assembly properties of an all-D version of SAP [(vrlppp)3]. The cellular uptake of (vrlppp)3 was evaluated in an in vivo assay in mice. Both flow cytometry and confocal laser-scanning microscopy experiments showed that a carboxyfluoresceinated version of the molecule, carboxyfluorescein–(vrlppp)3, is internalized rapidly in white blood cells and kidney cells. Significant fluorescence was also detected in other organs such as the spleen and the liver. Finally, the toxicity of (vrlppp)3 was examined, and no significant differences in the main biochemical parameters nor in weight were detected compared with controls.


2021 ◽  
Vol 22 (18) ◽  
pp. 10091
Author(s):  
Agnieszka Lewińska ◽  
Marta Domżał-Kędzia ◽  
Ewa Maciejczyk ◽  
Marcin Łukaszewicz ◽  
Urszula Bazylińska

In the present work, we establish novel “environmentally-friendly” oil-in-water nanoemulsions to enhance the transdermal delivery of bakuchiol, the so-called “bioretinol” obtained from powdered Psoralea corylifolia seeds via a sustainable process, i.e., using a supercritical fluid extraction approach with pure carbon dioxide (SC-CO2). According to Green Chemistry principles, five novel formulations were stabilized by “green” hybrid ionic surfactants such as coco-betaine—surfactin molecules obtained from coconut and fermented rapeseed meal. Preliminary optimization studies involving three dispersion stability tests, i.e., centrifugation, heating, and cooling cycles, indicated the most promising candidates for further physicochemical analysis. Finally, nanoemulsion colloidal characterization provided by scattering (dynamic and electrophoretic light scattering as well as backscattering), microscopic (transmission electron and confocal laser scanning microscopy), and spectroscopic (UV–Vis spectroscopy) methods revealed the most stable nanocarrier for transdermal biological investigation. In vitro, topical experiments provided on human skin cell line HaCaT keratinocytes and normal dermal NHDF fibroblasts indicated high cell viability upon treatment of the tested formulation with a final 0.02–0.2 mg/mL bakuchiol concentration. This excellent biocompatibility was confirmed by ex vivo and in vivo tests on animal and human skin tissue. The improved permeability and antiaging potential of the bakuchiol-encapsulated rich extract were observed, indicating that the obtained ecological nanoemulsions are competitive with commercial retinol formulations.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Kohei Tahara ◽  
Shiho Fujimoto ◽  
Fumihiko Fujii ◽  
Yuichi Tozuka ◽  
Takashi Jin ◽  
...  

We have developed submicron-sized liposomes modified with a mucoadhesive polymer to enhance peptide drug absorption after oral administration. Liposomal behavior in the gastrointestinal tract is a critical factor for effective peptide drug delivery. The purpose of this study was to prepare quantum dot- (QD-) loaded submicron-sized liposomes and examine liposomal behavior in the body after oral administration using in vivo fluorescence imaging. Two types of CdSe/CdZnS QDs with different surface properties were used: hydrophobic (unmodified) QDs and hydrophilic QDs with glutathione (GSH) surface modifications. QD- and GSH-QD-loaded liposomes were prepared by a thin film hydration method. Transmission electron microscopy revealed that QDs were embedded in the liposomal lipid bilayer. Conversely, GSH-QDs were present in the inner aqueous phase. Some of the GSH-QDs were electrostatically associated with the lipid membrane of stearylamine-bearing cationic liposomes. QD-loaded liposomes were detected in Caco-2 cells after exposure to the liposomes, and these liposomes were not toxic to the Caco-2 cells. Furthermore, we evaluated the in vivo bioadhesion and intestinal penetration of orally administered QD-loaded liposomes by observing the intestinal segment using confocal laser scanning microscopy.


Sign in / Sign up

Export Citation Format

Share Document