scholarly journals Effect of Sakura Block on Milk Production and Milk Quality of FH Cows in Late Lactation

2021 ◽  
Vol 16 (3) ◽  
pp. 266-272
Author(s):  
Jarmuji Jarmuji ◽  
D. Suherman ◽  
Yanuri Yanuri ◽  
R. Afriansyah ◽  
E. Sulistyowati

This study aims to evaluate milk production, fat content, and protein content of Friesian Holland (FH) dairy cow's milk by giving Sakura block at the final lactation of FH cow. The design used was the Latin Square Design (LSD), with treatments of P0 (0 Sakura blocks), P1 (300 gr Sakura blocks), P2 (600 gr Sakura blocks), and P3 (900 gr Sakura blocks). This study involved four dairy cows for four periods of which period consisted of 10 treatment days, where the last 3 days of each period were the milk sample collection. Milk production and feed consumption were measured and weighed daily. The results showed that the treatment had a significant effect (P <0.05) on the consumption of dry matter ratio and no significant effect (P> 0.05) on milk production, fat content, and milk protein.

2010 ◽  
Vol 39 (9) ◽  
pp. 1889-1893 ◽  
Author(s):  
André de Faria Pedroso ◽  
Luiz Gustavo Nussio ◽  
Armando de Andrade Rodrigues ◽  
Flávio Augusto Portela Santos ◽  
Gerson Barreto Mourão ◽  
...  

An experiment was performed aiming at evaluating the performance of dairy cows fed sugarcane silages treated with additives compared to cows fed fresh forage. Twenty-four Holstein cows were grouped in blocks of three cows, according to parity order and milk production level, in multiple 3 x 3 Latin Square design to evaluate three types of ration (63% roughage and 37% concentrate in dry matter - DM): ration with silage treated with urea (5.0 g/kg of fresh forage - FF) + sodium benzoate (0.5 g/kg FF); ration with silage inoculated with Lactobacillus buchneri (5 x 10(4) cfu/g FF); ration with fresh sugarcane. Each evaluation period consisted of two weeks for adaptation and one week for data collection. Cows fed rations with silages treated with urea + benzoate and L. buchneri showed lower DM intake (18.5 vs 21.4 kg/day) and lower milk production (17.4 vs 18.6 kg/day) in comparison to those fed fresh forage ration. Fat content was higher in the milk of cows fed silage inoculated with L. buchneri compared to cows in the fresh forage group resulting in similar 3.5% fat corrected milk (FCM) among cows in both groups. Cows fed ration with silage treated with urea + benzoate presented intermediate fat content in milk but inferior FCM production compared to animals fed fresh sugarcane. Feed efficiency (kg FCM/kg DMI) was higher for cows fed ration produced with the inoculated silage (0.95), intermediate for cows that received silage treated with the combination of chemical additives (0.91) and lower for cows fed the ration with fresh sugarcane (0.83).


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 919
Author(s):  
Verónica M. Merino ◽  
Lorena Leichtle ◽  
Oscar A. Balocchi ◽  
Francisco Lanuza ◽  
Julián Parga ◽  
...  

The aim was to determine the effect of the herbage allowance (HA) and supplement type (ST) on dry matter intake (DMI), milk production and composition, grazing behavior, rumen function, and blood metabolites of grazing dairy cows in the spring season. Experiment I: 64 Holstein Friesian dairy cows were distributed in a factorial design that tested two levels of daily HA (20 and 30 kg of dry matter (DM) per cow) and two ST (high moisture maize (HMM) and cracked wheat (CW)) distributed in two daily rations (3.5 kg DM/cow/day). Experiment II: four mid-lactation rumen cannulated cows, supplemented with either HMM or CW and managed with the two HAs, were distributed in a Latin square design of 4 × 4, for four 14-d periods to assess ruminal fermentation parameters. HA had no effect on milk production (averaging 23.6 kg/day) or milk fat and protein production (823 g/day and 800 g/day, respectively). Cows supplemented with CW had greater protein concentration (+1.2 g/kg). Herbage DMI averaged 14.17 kg DM/cow.day and total DMI averaged 17.67 kg DM/cow.day and did not differ between treatments. Grazing behavior activities (grazing, rumination, and idling times) and body condition score (BCS) were not affected by HA or ST. Milk and plasma urea concentration increased under the high HA (+0.68 mmol/L and +0.90 mmol/L, respectively). Cows supplemented with HMM had lower milk and plasma urea concentrations (0.72 mmol/L and 0.76 mmol/L less, respectively) and tended (p = 0.054) to have higher plasma β-hydroxybutyrate. Ruminal parameters did not differ between treatments.


Author(s):  
F.P. O'Mara ◽  
J.J. Murphy ◽  
M. Rath

Milk protein synthesis may be limited by amino acid (AA) flow to the duodenum. This can be increased by increasing the flow of microbial AA's or undegraded feed AA's. This experiment was carried out to determine the effect on milk production and nutrient flows at the duodenum of including fishmeal (120g/kg) in the supplement to grass silage at two levels of supplement feeding.The treatments, arranged in a 2x2 factorial, were 1.) 3.5 kg/day of 0% fishmeal supplement (L-UDP), 2.) 7 kg/day of L-UDP, 3.) 3.5 kg/day of 12% fishmeal supplement (H-UDP), and 4.) 7 kg/day of H-UDP. Supplements were fed to 3 6 Friesian cows in a 4x4 multiple Latin-square trial with three week periods to determine production responses, and to four ruminally and duodenally cannulated cows to determine rumen fermentation and nutrient flows. Flows were determined by the dual marker technique of Faichney (1975) using cobalt-EDTA and ytterbium acetate as liquid and solid phase markers respectively. Purines were used as the bacterial marker (Zinn and Owens, 1986). Degradability of the feeds was measured in 3 other cows using the small bag technique described by De Boer et al. (1987).


1986 ◽  
Vol 66 (1) ◽  
pp. 85-95 ◽  
Author(s):  
J. D. ERFLE ◽  
F. D. SAUER ◽  
S. MAHADEVAN ◽  
R. M. TEATHER

In two experiments, lactating cows (26 in exp. 1; 32 in exp. 2) were fed an 11.3% crude protein (CP) diet, a 14.7% CP diet containing untreated soybean meal (SBM) or a 14.6% CP diet containing formaldehyde-treated SBM (FSBM), all three fed as a complete blended diet with control corn silage (CCS) (exp. 1); a 12% CP diet, a 13.4% CP diet containing SBM or a 13.3% CP diet containing FSBM, all fed as a complete blended diet with urea-treated corn silage (UCS) (exp. 2). In both experiments concentrates and CCS or UCS were mixed (50:50 dry matter) daily and fed ad lib for a 16-wk period. The increase of CP over the low CP negative control by addition of untreated SBM resulted in a significant (P < 0.05) increase in milk production in both experiments. The addition of FSBM had no significant effect. When comparing solids-corrected milk (SCM), addition of SBM, whether treated or not, significantly increased SCM in both experiments. In neither experiment did FSBM improve milk production over untreated SBM. All animals fed CCS lost body weight but there was no difference between treatments. For animals fed UCS the low CP group lost significantly (P < 0.05) more body weight than did the group fed FSBM. Dry matter (DM) intake was significantly (P < 0.05) lower for the FSBM fed group than for the group fed untreated SBM in exp. 1 (CCS). DM intake was significantly (P < 0.05) increased by either FSBM or SBM over the low CP control fed UCS. Milk protein was the only component significantly (P < 0.05) decreased by FSBM in exp. 1. Isobutyric and isovaleric acids were significantly (P < 0.05) lower in rumen fluid of animals on FSBM plus CCS. Rumen microbial protein content seemed to be more adversely affected by FSBM with CCS than UCS. Amino acid content of FSBM and SBM demonstrated that lysine and tyrosine were lost from SBM after treatment with formaldehyde. The lack of a response in milk production to FSBM is discussed in terms of a lysine and tyrosine deficiency for milk protein synthesis and the adverse effect that formaldehyde protection of SBM may have on the rumen microbial population. Key words: Lactation, dairy cows, urea, corn silage, soybean meal, formaldehyde treatment


2019 ◽  
Vol 71 (3) ◽  
pp. 1037-1046
Author(s):  
M.F. Miguel ◽  
R. Delagarde ◽  
H.M.N. Ribeiro-Filho

ABSTRACT Corn silage supplementation for dairy cows grazing in temperate annual pastures has rarely been investigated. The aim of this study is to compare two supplementation levels (0 and 4kg dry matter [DM]/day of a 7:1 mixture of corn silage and soybean meal) in dairy cows strip-grazing annual ryegrass (Lolium multiflorum Lam.) at two pasture allowances (PA, low= 25 and high = 40kg DM/d at ground level). The study was carried out according to an incomplete 4 × 3 Latin square design, using 12 cows and three experimental periods of 12 days. The green leaves allowances were only 4.9 and 8.5kg DM/d at the low and high PA, respectively. The total DM intake and milk production increased in supplemented cows compared to un-supplemented cows at the low PA, but were similar between supplementation levels at the high PA. The PI was unaffected by the PA, whereas the substitution rate was 0.68 in cows at the low PA and 1.35 in cows at the high PA. Corn silage supplementation may improve the total DM intake and milk production of dairy cows grazing in temperate annual pastures, but only at a low PA.


2017 ◽  
Vol 15 (2) ◽  
pp. 171-177
Author(s):  
Retno Iswarin Pujaningsih

In general, goat milk production is strongly influenced by the quality of feed given. This study aims to evaluate the type of forage fiber feed source that has an effect on quality of ettawah goat milk. The material used is 12 lactation crossbreed ettawah goat month 3rd. Feed given is concentrate and source of fiber (Pennisetum purpureum grass, Albizia chinensis leaves, Zea mays straw). The consumption of dry matter, milk production and milk fat content were observed as parameters. The results show that the combination of concentrate with Zea mays straw can increase milk fat content up to 0.9%. Milk production was not significantly different in each treatment. It was concluded that the combination of concentrate and Zea mays straw was recommended to increase the milk fat content of crossbreed ettawah goat.


1994 ◽  
Vol 74 (1) ◽  
pp. 103-113 ◽  
Author(s):  
G. K. Macleod ◽  
P. E. Colucci ◽  
A. D. Moore ◽  
D. G. Grieve ◽  
N. Lewis

Two lactation trials were conducted with Holstein cows to assess the effects of varying the feeding frequency of concentrates, addition of long hay, and the sequence of hay and grain feeding on performance, rumen fermentation and eating behavior. Numbers of primiparous and multiparous cows assigned to repeated Latin square designs (4 × 4) were 8 and 12 for exp. 1 and 12 and 20 for exp. 2. Each experiment utilized four extra rumen-fistulated lactating cows to examine aspects of rumen metabolism. The four treatments applied in exp. 1 were (a) twice-daily feeding of concentrate, no hay; (b) thrice-daily feeding of concentrate, no hay; (c) hay offered 1 h before concentrate; and (d) hay offered 1 h after concentrate. Treatments in exp. 2 were similar, with the following exceptions: (b) concentrate six times daily; (c) hay 2 h before concentrate; and (d) hay 0.5 h after concentrate. In each treatment in both experiments, alfalfa silage was offered ad libitum. The average concentrate/forage ratio of the diets was 74:26 and 60:40 for exp. 1 and 2, respectively. In exp. 1, except for time spent eating and concentration of rumen propionate (increased with addition of 2 kg hay d−1, P < 0.05), treatments had no effect on dry matter intake, milk production and rumen metabolism. In exp. 2, inclusion of hay in the diet (3 kg d−1) increased DM intake (P < 0.001) and milk (P < 0.05), protein and lactose (P < 0.01) yields but decreased milk-fat test (P < 0.01). Hay also increased the ruminal molar proportions of propionate, butyrate (P < 0.05) and valerate (P < 0.001) and decreased acetate (P < 0.05), isobutyrate and isovalerate (P < 0.001). As in exp. 1, rumen ammonia N and pH were not affected by treatments. The effects of hay inclusion in the diet in exp. 2 are consistent with the high quality of hay used, which had a lower fiber content than the silage. Key words: Feeding frequency, feeding sequence, lactating dairy cows


2021 ◽  
Vol 19 (3) ◽  
pp. 311
Author(s):  
Inggit Kentjonowaty ◽  
Achmad Bagus Adhiluhung Mardhotillah ◽  
Trinil Susilawati ◽  
Puguh Surjowardojo

<p class="MDPI17abstract"><strong>Objective: </strong><span lang="EN-GB">The objective of this study was conducted to evaluate the effects of Mammae Hand Massages (MHM) on oxytocin release, milk yield, and milk quality in dairy cows.</span></p><p class="MDPI17abstract"><strong>Methods: </strong><span lang="EN">Twelve dairy cows with the following criterion: 5-yr-old, 1st to 9th month of lactation, and average body weight of 390 ± 5.55 kg were used. Cows were assigned in a randomized block design with 4 treatments, i.e T0 (without massage), T1 (MHM for 20 s), T2 (MHM for 50 s), and T3 (MHM for 80 s). Oxytocin release, milk yield, and milk quality were measured accordingly</span><span lang="EN-GB">.</span><strong></strong></p><p class="MDPI17abstract"><strong>Results: </strong><span lang="EN">The data obtained were analyzed using analysis of variance (ANOVA). The results showed that MHM had a very significant effect on milk production (P &lt;0.01) as evidenced by the MHM 50 s treatment obtained the highest average milk production (13.08 ± 3.38 liters/head/day) compared to the MHM 20 s, MHM 80 s and control. MHM (1-1.6 volts) for 50 s resulted in the highest release of oxytocin (0.22955 pcg/0.1mL) at 240 seconds compared to control, MHM 20 s and 80 s. Likewise, the percentage of milk protein content (2.96 ± 0.03) and milk fat content (4.27 ± 0.70) was highest at MHM 50 s</span><span lang="EN-GB">.</span><strong></strong></p><strong><span>Conclusions: </span></strong><span lang="EN">It can be concluded that MHM (1-1.6 volts) for 50 seconds increases the release of oxytocin, milk production, and milk quality in terms of the percentage of milk protein and fat content</span><span lang="EN-GB">.</span>


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3545
Author(s):  
Layla King ◽  
Janaka Wickramasinghe ◽  
Brooke Dooley ◽  
Carrie McCarthy ◽  
Emily Branstad ◽  
...  

The study objective was to determine the effects of rumen-protected methionine (Met) by microencapsulation (RPM) on amino acid (AA) supply to the udder, milk production, and manure nitrogen (N) losses of dairy cows. A corn and soybean-based diet deficient in metabolizable Met (~10 g/d) was supplemented with RPM providing 0, 11.0, 19.3, and 27.5 g/d of Met. Dry matter intake (DMI), milk production, plasma essential AA (EAA), mammary plasma flow (MPF), and fecal (FN) and urinary N (UN) outputs (g/d) were determined. The RPM increased linearly milk yield, milk protein yield, and energy corrected milk yield (p < 0.040) without affecting DMI. Milk protein yield increased by 50 g/d for the 19.3 vs. 0 g/d dose (p = 0.006) but the rate of increment decreased for 27.5 g/d dose. Plasma Met, and MPF increased linearly with RPM dose (p < 0.050). Apparent total tract digestibility of crude protein (p = 0.020) and FN (p = 0.081) decreased linearly with RPM. The UN did not change but total manure N decreased linearly with RPM (p = 0.054). The RPM (19.3 g/d) seemed to help cows overcome the metabolizable Met deficiency while mitigating manure N excretions to the environment.


2000 ◽  
Vol 71 (2) ◽  
pp. 349-357 ◽  
Author(s):  
D. L. Romney ◽  
V. Blunn ◽  
R. Sanderson ◽  
J. D. Leaver

AbstractTwelve dairy cows in early lactation were offered low (L; 215 g/kg) or high (H; 449 g/kg) dry matter(DM) content silages, prepared using material from the same sward. In addition, all animals received 9 kg/day, of supplements based on barley (B), sugar-beet pulp (SB) or a 50: 50 mixture of the two (B: SB), in two equal portions at 07:30 and 14:30 h. The six treatments were offered in an incomplete Latin square design. Mean intakes of H (14·4 kg DM per day) were significantly higher than intakes observed for L (10·0 kg DM per day) (P < 0·001). Within silage type, highest intakes were observed for cows receiving the SB supplement (P < 0·01). Higher intakes of H were reflected in higher total milk yield (P < 0·05) as well as fat (P < 0·05) and protein (P < 0·01) yield. Milk protein concentration was greater for animals receiving silage H (P < 0·001), with lower values being observed for animals consuming SB (P < 0·05), within silage type. Time spent eating, duration and number of meals were similar for either silage and the higher intakes of H silage reflected greater intake rates (g DM per min) (P < 0·001) resulting in larger meal sizes (P < 0·001). All chewing indices (time spent eating silage, ruminating and total time chewing per kg DM ingested) were greater for the L silage (P < 0·001). It is concluded that the benefits in forage intake with higher DM grass silages, for high yielding dairy cows, are associated with consequential benefits in milk yield and milk protein content. The most likely explanation for the greater intakes is a faster particle breakdown in the rumen allowing larger meal sizes before animals became constrained. The higher intakes of silage when animals consumed the SB supplement may be due to a slower rate of fermentation of the supplement, which was more closely matched to that of silage. Although not significant there was a tendency for differences in silage intake between animals receiving B compared with SB supplements to be greater for animals receiving the H silage suggesting that supplementation strategies to ensure optimal forage utilization may differ for silages of differing DM content.


Sign in / Sign up

Export Citation Format

Share Document