scholarly journals Short- and long-term variations in groundwater temperature caused by changes in vegetation cover

2021 ◽  
Vol 4 (1) ◽  
pp. 127-134
Author(s):  
Maria De Fatima Santos Pinheiro ◽  
Günther Buntebarth ◽  
Andrea Polle ◽  
Martin Sauter

Several comparative studies of the earth's surface provide evidence that vegetation and other bio-physical processes at the earth's surface can directly affect the atmospheric boundary layer, leading to changes in temperature and precipitation patterns. In this study, we demonstrate how vegetation cover can be responsible for the subsurface temperature variation as well as how this temperature variation can be related to past events. A linear decrease of 0.0407 K/year was estimated, and a decrease of 2 mK was observed in subsurface temperature when the surface temperature exceeded 9 oC. This diurnal temperature variation occurs during the phenological growing season of the vegetation. The transient temperature shows an annual cycle at a depth of 40 m. Model calculation applying a linear decrease in surface temperature of 2 K as a boundary condition was simulated. Comparing the results with the trend it is realistic to assume that when an apparent thermal diffusivity of 1.8*10-6 m²/s is applied an event starting between 10 and 20 years ago is responsible for the detected decrease in temperature. However, with this thermal diffusivity the conductive annual temperature variation reaches an amplitude of 1.1 mK instead of the measured 5.4 mK at 40 m. In conclusion, beside the vegetation causing additional convective heat transport triggered by the annual surface temperature, the influence of reduced solar incoming heat radiation reaching the ground caused by the increased shadowing effect of vegetation cover might be responsible for a continuous decrease in local temperature of 2 K being active approximately 20 years after plantation.

2008 ◽  
Vol 74 (4) ◽  
pp. 451-461 ◽  
Author(s):  
Rongbo Xiao ◽  
Qihao Weng ◽  
Zhiyun Ouyang ◽  
Weifeng Li ◽  
Erich W. Schienke ◽  
...  

2005 ◽  
Vol 42 (5) ◽  
pp. 1377-1390 ◽  
Author(s):  
Matthew D Alexander ◽  
Kerry TB MacQuarrie

Accurate measurements of in situ groundwater temperature are important in many groundwater investigations. Temperature is often measured in the subsurface using an access tube in the form of a piezometer or monitoring well. The impact of standpipe materials on the conduction of heat into the subsurface has not previously been examined. This paper reports on the results of a laboratory experiment and a field experiment designed to determine if different standpipe materials or monitoring instrument configurations preferentially conduct heat into the shallow sub surface. Simulations with a numerical model were also conducted for comparison to the laboratory results. Statistical analysis of the laboratory results demonstrates that common standpipe materials, such as steel and polyvinylchloride (PVC), do not affect temperature in the subsurface. Simulations with a finite element flow and heat transport model also confirm that the presence of access tube materials does not affect shallow groundwater temperature measurements. Field results show that different instrument configurations, such as piezometers and water and air filled and sealed well points, do not affect subsurface temperature measurements.Key words: groundwater temperature, temperature measurement, conduction, piezometers, piezometer standpipes, thermal modelling.


2021 ◽  
Vol 63 (4) ◽  
pp. 341-349
Author(s):  
Mete Onur Kaman ◽  
Nevin Celik ◽  
Resul Das

Abstract In present the study, sudden cooling, in other words thermal shock, is applied to a plate that is originally a functionally graded material (FGM). The flat plate is assumed to have an edge crack on it. Hence a numerical couple-field analysis is performed on the plate. The FGM is a combination of Ni and Al2O3. The thermal and mechanical properties of the FGM are assumed to depend on temperature variation. The mixing percentages of the Ni and Al2O3 throughout the plate are considered to vary (i) linearly, (ii) quadratically and (iii) in half-order. In order to solve the problem, a new subroutine depending on temperature is written using APDL (ANSYS Parametric Design Language) codes. Three values of the heat transfer coefficient are applied to the initially heated plate. As a result, the transient temperature variation and stress intensity factor are presented to show the thermo-mechanical relation of the plate. The material properties changing with temperature results in more reliable temperature values. Increasing the heat transfer coefficient results in better cooling and in a lesser amount of time to reach ambient air temperature.


2019 ◽  
Author(s):  
Bouchra Ait Hssaine ◽  
Olivier Merlin ◽  
Jamal Ezzahar ◽  
Nitu Ojha ◽  
Salah Er-raki ◽  
...  

Abstract. Thermal-based two-source energy balance modeling is very useful for estimating the land evapotranspiration (ET) at a wide range of spatial and temporal scales. However, the land surface temperature (LST) is not sufficient for constraining simultaneously both soil and vegetation flux components in such a way that assumptions (on either the soil or the vegetation fluxes) are commonly required. To avoid such assumptions, a new energy balance model (TSEB-SM) was recently developed in Ait Hssaine et al. (2018a) to integrate the microwave-derived near-surface soil moisture (SM), in addition to the thermal-derived LST and vegetation cover fraction (fc). Whereas, TSEB-SM has been recently tested using in-situ measurements, the objective of this paper is to evaluate the performance of TSEB-SM in real-life using 1 km resolution MODIS (Moderate resolution imaging spectroradiometer) LST and fc data and the 1 km resolution SM data disaggregated from SMOS (Soil Moisture and Ocean Salinity) observations by using DisPATCh. The approach is applied during a four-year period (2014–2018) over a rainfed wheat field in the Tensift basin, central Morocco, during a four-year period (2014–2018). The field was seeded for the 2014–2015 (S1), 2016–2017 (S2) and 2017–2018 (S3) agricultural season, while it was not ploughed (remained as bare soil) during the 2015–2016 (B1) agricultural season. The mean retrieved values of (arss, brss) calculated for the entire study period using satellite data are (7.32, 4.58). The daily calibrated αPT ranges between 0 and 1.38 for both S1 and S2. Its temporal variability is mainly attributed to the rainfall distribution along the agricultural season. For S3, the daily retrieved αPT remains at a mostly constant value (∼ 0.7) throughout the study period, because of the lack of clear sky disaggregated SM and LST observations during this season. Compared to eddy covariance measurements, TSEB driven only by LST and fc data significantly overestimates latent heat fluxes for the four seasons. The overall mean bias values are 119, 94, 128 and 181 W/m2 for S1, S2, S3 and B1 respectively. In contrast, these errors are much reduced when using TSEB-SM (SM and LST combined data) with the mean bias values estimated as 39, 4, 7 and 62 W/m2 for S1, S2, S3 and B1 respectively.


2020 ◽  
Vol 13 (9) ◽  
pp. 3975-3993 ◽  
Author(s):  
Miguel Nogueira ◽  
Clément Albergel ◽  
Souhail Boussetta ◽  
Frederico Johannsen ◽  
Isabel F. Trigo ◽  
...  

Abstract. Earth observations were used to evaluate the representation of land surface temperature (LST) and vegetation coverage over Iberia in two state-of-the-art land surface models (LSMs) – the European Centre for Medium-Range Weather Forecasts (ECMWF) Carbon-Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL) and the Météo-France Interaction between Soil Biosphere and Atmosphere model (ISBA) within the SURface EXternalisée modeling platform (SURFEX-ISBA) for the 2004–2015 period. The results showed that the daily maximum LST simulated by CHTESSEL over Iberia was affected by a large cold bias during summer months when compared against the Satellite Application Facility on Land Surface Analysis (LSA-SAF), reaching magnitudes larger than 10 ∘C over wide portions of central and southwestern Iberia. This error was shown to be tightly linked to a misrepresentation of the vegetation cover.  In contrast, SURFEX simulations did not display such a cold bias. We show that this was due to the better representation of vegetation cover in SURFEX, which uses an updated land cover dataset (ECOCLIMAP-II) and an interactive vegetation evolution, representing seasonality. The representation of vegetation over Iberia in CHTESSEL was improved by combining information from the European Space Agency Climate Change Initiative (ESA-CCI) land cover dataset with the Copernicus Global Land Service (CGLS) leaf area index (LAI) and fraction of vegetation coverage (FCOVER). The proposed improvement in vegetation also included a clumping approach that introduces seasonality to the vegetation cover. The results showed significant added value, removing the daily maximum LST summer cold bias completely, without reducing the accuracy of the simulated LST, regardless of season or time of the day. The striking performance differences between SURFEX and CHTESSEL were fundamental to guiding the developments in CHTESSEL highlighting the importance of using different models. This work has important implications: first, it takes advantage of LST, a key variable in surface–atmosphere energy and water exchanges, which is closely related to satellite top-of-atmosphere observations, to improve the model's representation of land surface processes. Second, CHTESSEL is the land surface model employed by ECMWF in the production of their weather forecasts and reanalysis; hence systematic errors in land surface variables and fluxes are then propagated into those products. Indeed, we showed that the summer daily maximum LST cold bias over Iberia in CHTESSEL is present in the widely used ECMWF fifth-generation reanalysis (ERA5). Finally, our results provided hints about the interaction between vegetation land–atmosphere exchanges, highlighting the relevance of the vegetation cover and respective seasonality in representing land surface temperature in both CHTESSEL and SURFEX. As a whole, this work demonstrated the added value of using multiple earth observation products for constraining and improving weather and climate simulations.


Sign in / Sign up

Export Citation Format

Share Document