scholarly journals Fraction Ball: Playful and Physically Active Fraction and Decimal Learning

2021 ◽  
Author(s):  
Andres Sebastian Bustamante ◽  
Kreshnik Begolli ◽  
Daniela Alvarez-Vargas ◽  
Drew H Bailey ◽  
Lindsey Richland

This study tested a novel approach to capitalizing on the benefits of play for informal math learning. Two experiments evaluated a platform called “Fraction Ball”, that provides an embodied, playful, and physically active learning experience by modifying the lines on a basketball court to support rational number learning. In the Pilot Experiment, 69 5th-6th graders were randomly assigned to play a set of 4 different Fraction Ball games or attend normal physical education (PE) class and completed rational number pretests and posttests. After strategic improvements to expand the intervention, the same protocol was implemented in the Efficacy Experiment with 160 4th-6th graders. Playing Fraction Ball for 4 PE class periods (Pilot Experiment) improved students’ ability to convert fractions to decimals. Playing a revised version of 6 different Fraction Ball games for 6 PE class periods (Efficacy Experiment) significantly improved children’s rational number understanding as reflected by higher scores in overall accuracy, with positive impacts on several subtests. Fraction Ball represents a low-cost, highly scalable intervention that promotes math learning in a fun and engaging approach.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
João Gama Monteiro ◽  
Jesús L. Jiménez ◽  
Francesca Gizzi ◽  
Petr Přikryl ◽  
Jonathan S. Lefcheck ◽  
...  

AbstractUnderstanding the complex factors and mechanisms driving the functioning of coastal ecosystems is vital towards assessing how organisms, ecosystems, and ultimately human populations will cope with the ecological consequences of natural and anthropogenic impacts. Towards this goal, coastal monitoring programs and studies must deliver information on a range of variables and factors, from taxonomic/functional diversity and spatial distribution of habitats, to anthropogenic stress indicators such as land use, fisheries use, and pollution. Effective monitoring programs must therefore integrate observations from different sources and spatial scales to provide a comprehensive view to managers. Here we explore integrating aerial surveys from a low-cost Remotely Piloted Aircraft System (RPAS) with concurrent underwater surveys to deliver a novel approach to coastal monitoring. We: (i) map depth and substrate of shallow rocky habitats, and; (ii) classify the major biotopes associated with these environmental axes; and (iii) combine data from i and ii to assess the likely distribution of common sessile organismal assemblages over the survey area. Finally, we propose a general workflow that can be adapted to different needs and aerial platforms, which can be used as blueprints for further integration of remote-sensing with in situ surveys to produce spatially-explicit biotope maps.


2021 ◽  
Author(s):  
Ching-Wei Chuang ◽  
Harry H. Cheng

Abstract In the modern world, building an autonomous multi-robot system is essential to coordinate and control robots to help humans because using several low-cost robots becomes more robust and efficient than using one expensive, powerful robot to execute tasks to achieve the overall goal of a mission. One research area, multi-robot task allocation (MRTA), becomes substantial in a multi-robot system. Assigning suitable tasks to suitable robots is crucial in coordination, which may directly influence the result of a mission. In the past few decades, although numerous researchers have addressed various algorithms or approaches to solve MRTA problems in different multi-robot systems, it is still difficult to overcome certain challenges, such as dynamic environments, changeable task information, miscellaneous robot abilities, the dynamic condition of a robot, or uncertainties from sensors or actuators. In this paper, we propose a novel approach to handle MRTA problems with Bayesian Networks (BNs) under these challenging circumstances. Our experiments exhibit that the proposed approach may effectively solve real problems in a search-and-rescue mission in centralized, decentralized, and distributed multi-robot systems with real, low-cost robots in dynamic environments. In the future, we will demonstrate that our approach is trainable and can be utilized in a large-scale, complicated environment. Researchers might be able to apply our approach to other applications to explore its extensibility.


2021 ◽  
Vol 18 ◽  
Author(s):  
Aparna Das

: In recent years, photocatalytic technology has shown great potential as a low-cost, environmentally friendly, and sustainable technology. Compared to other light sources in photochemical reaction, LEDs have advantages in terms of efficiency, power, compatibility, and environmentally-friendly nature. This review highlights the most recent advances in LED-induced photochemical reactions. The effect of white and blue LEDs in reactions such as oxidation, reduction, cycloaddition, isomerization, and sensitization is discussed in detail. No other reviews have been published on the importance of white and blue LED sources in the photocatalysis of organic compounds. Considering all the facts, this review is highly significant and timely.


2021 ◽  
Vol 55 (5) ◽  
pp. 2991-3020
Author(s):  
Mostafijur Rahaman ◽  
Sankar Prasad Mondal ◽  
Shariful Alam

In this article, an economic order quantity model has been studied in view of joint impacts of the memory and learning due to experiences on the decision-making process where demand is considered as price dependant function. The senses of memory and experience-based learning are accounted by the fractional calculus and dense fuzzy lock set respectively. Here, the physical scenario is mathematically captured and presented in terms of fuzzy fractional differential equation. The α-cut defuzzification technique is used for dealing with the crisp representative of the objective function. The main credit of this article is the introduction of a smart decision-making technique incorporating some advanced components like memory, self-learning and scopes for alternative decisions to be accessed simultaneously. Besides the dynamics of the EOQ model under uncertainty is described in terms of fuzzy fractional differential equation which directs toward a novel approach for dealing with the lot-sizing problem. From the comparison of the numerical results of different scenarios (as particular cases of the proposed model), it is perceived that strong memory and learning experiences with appropriate keys in the hand of the decision maker can boost up the profitability of the retailing process.


2021 ◽  
Author(s):  
Jiaqi Li ◽  
Lei Wei ◽  
Xianglin Zhang ◽  
Wei Zhang ◽  
Haochen Wang ◽  
...  

ABSTRACTDetecting cancer signals in cell-free DNA (cfDNA) high-throughput sequencing data is emerging as a novel non-invasive cancer detection method. Due to the high cost of sequencing, it is crucial to make robust and precise prediction with low-depth cfDNA sequencing data. Here we propose a novel approach named DISMIR, which can provide ultrasensitive and robust cancer detection by integrating DNA sequence and methylation information in plasma cfDNA whole genome bisulfite sequencing (WGBS) data. DISMIR introduces a new feature termed as “switching region” to define cancer-specific differentially methylated regions, which can enrich the cancer-related signal at read-resolution. DISMIR applies a deep learning model to predict the source of every single read based on its DNA sequence and methylation state, and then predicts the risk that the plasma donor is suffering from cancer. DISMIR exhibited high accuracy and robustness on hepatocellular carcinoma detection by plasma cfDNA WGBS data even at ultra-low sequencing depths. Analysis showed that DISMIR tends to be insensitive to alterations of single CpG sites’ methylation states, which suggests DISMIR could resist to technical noise of WGBS. All these results showed DISMIR with the potential to be a precise and robust method for low-cost early cancer detection.


2020 ◽  
Vol 45 ◽  
pp. 85-92
Author(s):  
Juan A. Escobar-Alvarez ◽  
Rocio Carrasco ◽  
Pedro R. Olivares ◽  
Sebastián Feu ◽  
Robinson Ramírez-Velez ◽  
...  

Agility is a key component of physical fitness in adolescents. However, the measurement of this variable is usually complex, requiring high cost instruments and complex software. To test the validity and reliability of a novel iPhone app (Lap Tracker Auto-timer) to measure agility performance among adolescents. Twenty-four physically active adolescents (15.7 ± 2.3 years old) participated in two testing sessions (separated by 7 days). They performed three 4 x 10 m agility test trials measured by Photocell or the iPhone app. The correlation analysis revealed high validity (r = .92; 95% confidence interval [CI] = .88 – .95), with a standard error of the estimate of 0.56 s (p < 0.001). The coefficient of variation (CV; 0.09) and intraclass correlation coefficient (ICC; .93; 95% CI = .85 – .97) showed an acceptable reliability. This study demonstrated that the iPhone App Lap Tracker Auto-timer could be a valid, reliable and low-cost tool to evaluate agility performance in adolescents. However, more studies are required to guarantee the utility of this app.


Transport ◽  
2015 ◽  
Vol 30 (3) ◽  
pp. 320-329 ◽  
Author(s):  
Erik Wilhelm ◽  
Joshua Siegel ◽  
Simon Mayer ◽  
Leyna Sadamori ◽  
Sohan Dsouza ◽  
...  

We present a novel approach to developing a vehicle communication platform consisting of a low-cost, open-source hardware for moving vehicle data to a secure server, a Web Application Programming Interface (API) for the provision of third-party services, and an intuitive user dashboard for access control and service distribution. The CloudThink infrastructure promotes the commoditization of vehicle telematics data by facilitating easier, flexible, and more secure access. It enables drivers to confidently share their vehicle information across multiple applications to improve the transportation experience for all stakeholders, as well as to potentially monetize their data. The foundations for an application ecosystem have been developed which, taken together with the fair value for driving data and low barriers to entry, will drive adoption of CloudThink as the standard method for projecting physical vehicles into the cloud. The application space initially consists of a few fundamental and important applications (vehicle tethering and remote diagnostics, road-safety monitoring, and fuel economy analysis) but as CloudThink begins to gain widespread adoption, the multiplexing of applications on the same data structure and set will accelerate its adoption.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Changju Kim ◽  
Bin Hu

Purpose Drawing on the resource-based view, this study aims to investigate the conditions under which small- and medium-sized retailers can improve competitive benefits through the lens of brand equity and strategies for competitive advantage in retail buying groups. Design/methodology/approach This study collected 241 samples from small- and medium-sized supermarket retailers who joined retail buying groups in Japan. Findings This study offers two key findings. First, the results indicate that a buying group’s brand equity partially mediates the relationship between member retailers’ strategic integration and their buying group benefits. Second, member retailers with a stronger differentiation orientation strengthen the positive impact of strategic integration on the buying group’s brand equity and buying group benefits. The moderating effects of low-cost orientation were not found to be significant. Practical implications To highlight the sustainable growth of small- and medium-sized retailers in retail buying groups, which are often ignored in the extant literature, this study offers practical guidance on the importance of a buying group’s brand equity. In addition, based on the findings, this paper postulates that member retailers pursuing differentiation orientation, rather than low-cost orientation, are more beneficial to retail buying groups in terms of relational outcomes and performance consequences. Originality/value By conceptualizing brand equity in retail buying groups, this study suggests a novel approach for retail management that investigates how a buying group’s brand equity is linked to strategic integration, strategies for competitive advantage and buying group benefits from the viewpoint of member retailers.


Author(s):  
Emran Md Amin ◽  
Nemai Chandra Karmakar

A novel approach for non-invasive radiometric Partial Discharge (PD) detection and localization of faulty power apparatuses in switchyards using Chipless Radio Frequency Identification (RFID) based sensor is presented. The sensor integrates temperature sensing together with PD detection to assist on-line automated condition monitoring of high voltage equipment. The sensor is a multi-resonator based passive circuit with two antennas for reception of PD signal from the source and transmission of the captured PD to the base station. The sensor captures PD signal, processes it with designated spectral signatures as identification data bits, incorporates temperature information, and retransmits the data with PD signals to the base station. Analyzing the PD signal in the base station, both the PD levels and temperature of a particular faulty source can be retrieved. The prototype sensor was designed, fabricated, and tested for performance analysis. Results verify that the sensor is capable of identifying different sources at the events of PD. The proposed low cost passive RFID based PD sensor has a major advantage over existing condition monitoring techniques due to its scalability to large substations for mass deployment.


2020 ◽  
Vol 10 (12) ◽  
pp. 353
Author(s):  
Shaya Wolf ◽  
Andrea Carneal Burrows ◽  
Mike Borowczak ◽  
Mason Johnson ◽  
Rafer Cooley ◽  
...  

Research on innovative, integrated outreach programs guided three separate week-long outreach camps held across two summers (2018 and 2019). These camps introduced computer science through real-world applications and hands-on activities, each dealing with cybersecurity principles. The camps utilized low-cost hardware and free software to provide a total of 84 students (aged 10 to 18 years) a unique learning experience. Based on feedback from the 2018 camp, a new pre/post survey was developed to assess changes in participant knowledge and interest. Student participants in the 2019 iteration showed drastic changes in their cybersecurity content recall (33% pre vs. 96% post), cybersecurity concept identification within real-world scenarios, and exhibited an increased ability to recognize potential cybersecurity threats in their every-day lives (22% pre vs. 69% post). Finally, students’ self-reported interest-level before and after the camp show a positive increase across all student participants, with the number of students who where highly interested in cybersecurity more than doubling from 31% pre-camp to 65% post-camp. Implications for educators are large as these activities and experiences can be interwoven into traditional schooling as well as less formal camps as pure computer science or through integrated STEM.


Sign in / Sign up

Export Citation Format

Share Document