scholarly journals Fe(OH)3/kaolinite nanoplatelets: Equilibrium and thermodynamic studies for the adsorption of Pb(II) ions from aqueous solution

2021 ◽  
Author(s):  
CI Chemistry International

Development of a sustainable route for preparation Fe(OH)3/kaolinite nanoplatelets from Batin El-Ghoul clay deposits, south Jordan with uniform plate-like morphology. Fe(OH)3/kaolinite nanoplatelets is an efficient adsorbent for the removal of Pb(II) ions from aqueous solutions. Effects of pH solution, adsorbent dose, initial metal ion concentration, contact time, and temperature on the adsorption process were examined. The Langmuir isotherm model is the best fit model to predict the experimental data and the adsorption capacity. Maximum adsorption capacity on Langmuir isotherm was 370.37 mg/g. Thermodynamic parameters revealed that the negative values of ΔGo and the positive value of ΔHo, the adsorption process was spontaneous and endothermic. Results revealed that Fe(OH)3/kaolinite is promising for the removal of metal ions from effluents.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ying Zhang ◽  
Ru Zheng ◽  
Jiaying Zhao ◽  
Yingchao Zhang ◽  
Po-keung Wong ◽  
...  

In this study, adsorption of zinc onto the adsorbent (untreated rice husk and NaOH-treated rice husk) was examined. During the removal process, batch technique was used, and the effects of pH and contact time were investigated. Langmuir isotherm was applied in order to determine the efficiency of NaOH-treated rice husk used as an adsorbent. The zinc adsorption was fast, and equilibrium was attained within 30 min. The maximum removal ratios of zinc for untreated rice husk and NaOH-treated rice husk after 1.5 h were 52.3% and 95.2%, respectively, with initial zinc concentration of 25 mg/L and optimum pH of 4.0. Data obtained from batch adsorption experiments fitted well with the Langmuir isotherm model. Maximum adsorption capacity of zinc onto untreated rice husk and NaOH-treated rice husk was 12.41 mg/g, and 20.08 mg/g respectively, at adsorbent dosage of 1 g/L at 25°C. The nature of functional groups (i.e., amino, carboxyl, and hydroxyl) and metal ion interactions was examined by the FT-IR technique. It was concluded that the NaOH-treated rice husk had stronger adsorption capacity for Zn2+compared with the untreated rice husk. The NaOH-treated rice husk is an inexpensive and environmentally friendly adsorbent for Zn2+removal from aqueous solutions.


2019 ◽  
Vol 31 (10) ◽  
pp. 2240-2244
Author(s):  
Vihar Patel ◽  
Akshit A. Patel ◽  
Bharat Dixit ◽  
Ritu Dixit

Removal of dyes colour and Cu(II) metal ion from aqueous solution using acetone-formaldehyde-salicyclic acid (AFSA) resin has been carried out. The results revealed that AFSA resin acts as a cheap substitute to commercial adsorbent like activated carbons. The effects of pH, adsorbent dose, contact time, and initial dye and Cu(II) metal ion concentration on the adsorption efficiencies were investigated. Isotherm studies were conducted using Langmuir and Freundlich models, and thermodynamic studies were also performed. Adsorption of dyes was found to obey the Langmuir isotherm model and have endothermic process. The maximum adsorption capacities calculated from the Langmuir isotherm were found to be 88.18 and 2.9 mg/g for methyl orange dyes


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Huo-Xi Jin ◽  
Hong Xu ◽  
Nan Wang ◽  
Li-Ye Yang ◽  
Yang-Guang Wang ◽  
...  

The ability to remove toxic heavy metals, such as Pb(II), from the environment is an important objective from both human-health and ecological perspectives. Herein, we describe the fabrication of a novel carboxymethylcellulose-coated metal organic material (MOF-5–CMC) adsorbent that removed lead ions from aqueous solutions. The adsorption material was characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. We studied the functions of the contact time, pH, the original concentration of the Pb(II) solution, and adsorption temperature on adsorption capacity. MOF-5–CMC beads exhibit good adsorption performance; the maximum adsorption capacity obtained from the Langmuir isotherm-model is 322.58 mg/g, and the adsorption equilibrium was reached in 120 min at a concentration of 300 mg/L. The adsorption kinetics is well described by pseudo-second-order kinetics, and the adsorption equilibrium data are well fitted to the Langmuir isotherm model (R2 = 0.988). Thermodynamics experiments indicate that the adsorption process is both spontaneous and endothermic. In addition, the adsorbent is reusable. We conclude that MOF-5–CMC is a good adsorbent that can be used to remove Pb(II) from aqueous solutions.


2020 ◽  
Vol 11 (4) ◽  
pp. 11891-11904

In the present study, batch mode adsorption was carried out to investigate the adsorption capacity of dried bael flowers (Aegle marmelos) for the adsorptive removal of Cu(II) ions from aqueous solutions by varying agitation time, initial metal concentration, the dose of adsorbent, temperature, and initial pH of the Cu(II) ion solution. The percentage removal of 98.7% was observed at 50 ppm initial metal ion concentration, 0.5 g/100.00 cm3 adsorbent dosage, within the contact time of 120 minutes at 30 ºC in the pH range of 4 – 7. The sorption processes of Cu(II) ions was best described by pseudo-second-order kinetics. Langmuir isotherm had a good fit with the experimental data with 0.97 of correlation coefficient (R2), and the maximum adsorption capacity obtained was 23.14 mg g-1 at 30 ºC. The results obtained from sorption thermodynamic studies suggested that the adsorption process is exothermic and spontaneous. SEM analysis showed tubular voids on the adsorbent. FTIR studies indicated the presence of functional groups like hydroxyl, –C-O, –C=O, and amide groups in the adsorbent, which can probably involve in metal ion adsorption. Therefore, dried bael flowers can be considered an effective low-cost adsorbent for treating Cu(II) ions.


2020 ◽  
Vol 17 (1) ◽  
pp. 6 ◽  
Author(s):  
Hao Liu ◽  
Xueying Wang ◽  
Chaofan Ding ◽  
Yuxue Dai ◽  
Yuanling Sun ◽  
...  

Environmental contextGlyphosate is a highly effective and widely used organophosphorus pesticide, but its residues can harm the environment and human health. We report a carboxylated carbon nanotubes-graphene oxide aerogel that can efficiently remove glyphosate from water. This technology has great application prospects in dealing with water contaminated with glyphosate. AbstractGlyphosate, an organophosphorus pesticide, has received considerable attention in recent years owing to its carcinogenic potency. The technologies that remove glyphosate in the environment, especially in water, are important. In this work, we prepare a carboxylated carbon nanotubes-graphene oxide aerogel (cCNTs-GA) by the freeze-drying method for the adsorption of glyphosate. The prepared aerogel exhibits an ultra-low density (7.30mgcm−3), good morphology and strong mechanical strength. Meanwhile, a NaOH solution (0.5molL−1) is selected as an eluent and the adsorption parameters for the adsorption of glyphosate are optimised. The properties of the adsorbents after multiple repetitions and the adsorption mechanism of the cCNTs-GA are also studied. The results show that the adsorbent can be recycled more than 20 times and maintains a good adsorption performance. The maximum adsorption capacity of glyphosate at pH 3 is calculated from the Langmuir isotherm model (546mgg−1 at the temperature of 298K), and the cCNTs-GA exhibits a high adsorption affinity and adsorption capacity for glyphosate, as determined by the partition coefficient (PC). The pseudo-second-order kinetic model fits well to the dynamic behaviour. The equilibrium adsorption process follows the Langmuir isotherm model and the adsorption process is mainly controlled by the intraparticle diffusion model. Furthermore, thermodynamic analysis indicates that the adsorption of glyphosate on the cCNTs-GA is exothermic and spontaneous. The adsorbent is used to remove glyphosate from waste water and the adsorption capacity of the cCNTs-GA for glyphosate is higher than other adsorbents, which indicates that the developed adsorbent has a great potential application in environmental pollution treatment.


2019 ◽  
Author(s):  
Chem Int

An easy route for preparation emulsion of kaolinite (Al2Si2O5.4H2O) from Sweileh sand deposits, west Amman, Jordan by hydrochloric acid under continuous stirring for 4 h at room temperature was performed and nano kaolinite powder was used as an adsorbent for the removal of Cu(II), Zn(II) and Ni(II) ions. Nano kaolinite was characterized by XRD, FT-IR and SEM techniques. Effect of pH, adsorbent dose, initial metal ion concentration, contact time and temperature on adsorption process was examined. The negative values of ΔGo and the positive value of ΔHo revealed that the adsorption process was spontaneous and endothermic. The Langmuir isotherm model fitted well to metal ions adsorption data and the adsorption capacity. The kinetic data provided the best correlation of the adsorption with pseudo-second order kinetic model. In view of promising efficiency, the nano kaolinite can be employed for heavy metal ions adsorption.


2018 ◽  
Vol 2 (1) ◽  
pp. 17-27
Author(s):  
Ade Oktasari

An experiment on Pb (II) metal ion adsorption using peanut (Arachis hypogea L.) shell without activation (KK), acid-activated (KKA), and base-activated (KKB) has been conducted. Peanut shell powder was activated using H3PO4 and KOH to improve adsorption effectivity and capacity. Characterization results using FT-IR spectrophotometer showed peak at 3410 and 2901 cm-1 indicated OH dan CH aliphatic from framework of cellulose. Optimum condition of Pb(II) adsorption for KK, KKA and KKB was occurred at the same optimum pH, that was pH 5, with contact time 60, 90 and 70 min, respectively. The adsorption kinetic parameter of Pb(II) ion for KK, KKA, and KKB followed pseudo second order kinetic with rate constants (k) in order of 12.279, 4.149, and 32.258 g mmol-1 min-1, with maximum adsorption capacity based on Langmuir isotherm model of 0.598, 0.505, and 0.622 mmol g-1, and adsorption energy of 26.735, 25.789, and 29.245 kJ mol-1, respectively. The results indicated that KOH-activated peanut (Arachis hypogea L.) shell has good adsorption affinity for Pb(II) with highest adsorption capacity compare to those from non-activated and acid-activated.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Rajaa Bassam ◽  
Achraf El hallaoui ◽  
Marouane El Alouani ◽  
Maissara Jabrane ◽  
El Hassan El Khattabi ◽  
...  

The aim of this study is the valorization of the Moroccan clays (QC-MC and QC-MT) from the Middle Atlas region as adsorbents for the treatment of water contaminated by cadmium Cd (II) ions. The physicochemical properties of natural clays are characterized by ICP-MS, XRD, FTIR, and SEM techniques. The adsorption process is investigated as a function of adsorbent mass, solution pH, contact time, temperature, and initial Cd (II) ion concentration. The kinetic investigation shows that the adsorption equilibrium of Cd (II) ions by both natural clays is reached after 30 min for QC-MT and 45 min for QC-MC and fits well to a pseudo-second-order kinetic model. The isotherm study is best fitted by a Freundlich model, with the maximum adsorption capacity determined by the linear form of the Freundlich isotherm being 4.23 mg/g for QC-MC and 5.85 mg/g for QC-MT at 25°C. The cadmium adsorption process was thermodynamically spontaneous and exothermic. The regeneration process showed that these natural clays had excellent recycling capacity. Characterization of the Moroccan natural clays before and after the adsorption process through FTIR, SEM, XRD, and EDX techniques confirmed the Cd (II) ion adsorption on the surfaces of both natural clay adsorbents. Overall, the high adsorption capacity of both natural clays for Cd (II) ions removal compared to other adsorbents motioned in the literature indicated that these two natural adsorbents are excellent candidates for heavy metal removal from aqueous environments.


BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 22-33
Author(s):  
Mahnaz Mahdavi ◽  
Mansor B. Ahmad ◽  
Md Jelas Haron ◽  
Mohamad Zaki Ab. Rahman

Cr(III) ions were adsorbed onto polyacrylamide-grafted rubberwood fibre, and effects of aqueous conditions were evaluated. The adsorbent was prepared via graft copolymerization of acrylamide (Am) onto rubberwood fibre (RWF), using ceric ammonium nitrate as an initiator. Fourier transform infrared spectroscopy was used to confirm the formation of PAm-g-RWF. Various variables affecting the adsorption capacity such as the pH of the solution, adsorption time, initial metal ion concentration, and temperature were investigated. The Cr(III) was up to 92% removed by PAm-g-RWF from an initial concentration of 10 mg/L at pH 5.0. Kinetic data fitted very well to a pseudo-second-order rate expression and less well to a pseudo-first-order equation. The equilibrium parameters for adsorption isotherms of the metal ions on the grafted fibre were obtained using Langmuir and Freundlich models, and the Langmuir model was found to be in better correlation with the experimental data with a maximum adsorption capacity of 18.24 mg/g. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°), and entropy change (ΔS°) were calculated; the adsorption process was spontaneous and endothermic.


2013 ◽  
Vol 28 ◽  
pp. 94-101 ◽  
Author(s):  
Rajeshwar Man Shrestha ◽  
Raja Ram Pradhananga ◽  
Margit Varga ◽  
Imre Varga

The present study deals with the use of activated carbons prepared from Lapsi seed stone as adsorbents for the removal of Pb (II) ions from aqueous solution. Two series of carbon have been prepared from Lapsi seed stones by treating with conc. H2SO4 and a mixture of H2SO4 and HNO3 in the ratio of 1:1 by weight for removal of metal ions. Chemical characterization of the resultant activated carbon was studied by Fourier Transform Infrared Spectroscopy and Boehm titration which revealed the presence of oxygen containing surface functional groups like carboxylic, lactonic, phenolic in the carbons. The effect of pH and initial metal ion concentration on the adsorption was studied in a batch process mode. The optimum pH for lead adsorption is found to be equal to 5. The adsorption data were better fitted with the Langmuir equations than Freundlich adsorption equation to describe the equilibrium isotherms. The maximum adsorption capacity of Pb (II) on the resultant activated carbons was 277.8 mg g-1 with H2SO4 and 423.7 mg g-1 with a mixture of H2SO4 and HNO3. The waste material used in the preparation of the activated carbons is inexpensive and readily available. Hence the carbons prepared from Lapsi seed stones can act as potential low cost adsorbents for the removal of Pb (II) from water. DOI: http://dx.doi.org/10.3126/jncs.v28i0.8114 Journal of Nepal Chemical Society Vol. 28, 2011 Page: 94-101 Uploaded Date: May 24, 2013


Sign in / Sign up

Export Citation Format

Share Document