Using deep learning to predict ideology from facial photographs: Expressions, beauty, and extra-facial information

2022 ◽  
Author(s):  
Stig Hebbelstrup Rye Rasmussen ◽  
steven ludeke ◽  
Robert Klemmensen

Deep learning techniques can use common public data such as facial photographs to predict sensitive personal information, but little is known about what information contributes to the predictive success of these techniques. This lack of knowledge limits both the public’s ability to protect against revealing unintended information as well as the scientific utility of deep learning results. We combine convolutional neural networks, heat maps, facial expression coding, and classification of identifiable features such as masculinity and attractiveness in our study of political ideology in 3323 Danes. Predictive accuracy from the neural network was 61% in each gender. Model-predicted ideology correlated with aspects of both facial expressions (happiness vs neutrality) and morphology (specifically, attractiveness in females). Heat maps highlighted the informativeness of areas both on and off the face, pointing to methodological refinements and the need for future research to better understand the significance of certain facial areas.

Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


2021 ◽  
Vol 22 (15) ◽  
pp. 7911
Author(s):  
Eugene Lin ◽  
Chieh-Hsin Lin ◽  
Hsien-Yuan Lane

A growing body of evidence currently proposes that deep learning approaches can serve as an essential cornerstone for the diagnosis and prediction of Alzheimer’s disease (AD). In light of the latest advancements in neuroimaging and genomics, numerous deep learning models are being exploited to distinguish AD from normal controls and/or to distinguish AD from mild cognitive impairment in recent research studies. In this review, we focus on the latest developments for AD prediction using deep learning techniques in cooperation with the principles of neuroimaging and genomics. First, we narrate various investigations that make use of deep learning algorithms to establish AD prediction using genomics or neuroimaging data. Particularly, we delineate relevant integrative neuroimaging genomics investigations that leverage deep learning methods to forecast AD on the basis of incorporating both neuroimaging and genomics data. Moreover, we outline the limitations as regards to the recent AD investigations of deep learning with neuroimaging and genomics. Finally, we depict a discussion of challenges and directions for future research. The main novelty of this work is that we summarize the major points of these investigations and scrutinize the similarities and differences among these investigations.


2019 ◽  
Vol 128 (2) ◽  
pp. 261-318 ◽  
Author(s):  
Li Liu ◽  
Wanli Ouyang ◽  
Xiaogang Wang ◽  
Paul Fieguth ◽  
Jie Chen ◽  
...  

Abstract Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.


2019 ◽  
Vol 37 (27_suppl) ◽  
pp. 270-270
Author(s):  
Laura Elizabeth Panattoni ◽  
Li Li ◽  
Catherine R. Fedorenko ◽  
Emily Silgard ◽  
Scott White ◽  
...  

270 Background: Approximately half of cancer patients undergoing outpatient chemotherapy experience unplanned Emergency Department (ED) visits and Inpatient (IP) stays. Current machine learning algorithms that identify high-risk patients are based on pre-treatment variables which can not detect changes in risk over time. Deep learning recurrent neural networks can model complex longitudinal patient histories. This study tests the feasibility of using an interpretable recurrent neural network to predict a patient’s daily likelihood of ED and unplanned IP stays in the six months following chemotherapy initiation. Methods: Medicare and commercial claims data were linked with cancer registry records for patients in Washington State from 2011 to 2017. The study included patients diagnosed with any primary tumor site, excluding leukemia, and treated with chemotherapy. We used the Reverse Time Attention model (RETAIN) with a 1:10 case-control match and included registry elements; diagnoses, procedures, medication, and utilization pre-and post-chemotherapy initiation. Patients were randomly divided into internal training, validation, and test sets (75%, 10%, 15%). Model accuracy was measured by the areas under the receiver operating curve (ROC) and precision-recall curve (PRC), and the Youden sensitivity and specificity. Results: Of the 15,400 eligible patients; 4,037 (26.2%) visited the ED a median of 1 time (6,080 total visits); 5,116 (33.2%) had a median of 1 IP stay (7,839 total stays). Both models had good predictive accuracy: The top 20 predictors for ED visits included 5 chemotherapy regimes, 12 procedures, and 2 tumor characteristics; IP stays included all chemotherapy regimes. Conclusions: The promising performance of RETAIN supports the possibility of building a tool capable of estimating daily hospitalization risk. However, future research, particularly with alternative data sources, may be required to predict hospitalization in a real time clinical setting. [Table: see text]


2019 ◽  
Vol 3 (1) ◽  
pp. 14 ◽  
Author(s):  
Matteo Bodini

The task of facial landmark extraction is fundamental in several applications which involve facial analysis, such as facial expression analysis, identity and face recognition, facial animation, and 3D face reconstruction. Taking into account the most recent advances resulting from deep-learning techniques, the performance of methods for facial landmark extraction have been substantially improved, even on in-the-wild datasets. Thus, this article presents an updated survey on facial landmark extraction on 2D images and video, focusing on methods that make use of deep-learning techniques. An analysis of many approaches comparing the performances is provided. In summary, an analysis of common datasets, challenges, and future research directions are provided.


2018 ◽  
Vol 16 (06) ◽  
pp. 1840027 ◽  
Author(s):  
Wen Juan Hou ◽  
Bamfa Ceesay

Information on changes in a drug’s effect when taken in combination with a second drug, known as drug–drug interaction (DDI), is relevant in the pharmaceutical industry. DDIs can delay, decrease, or enhance absorption of either drug and thus decrease or increase their action or cause adverse effects. Information Extraction (IE) can be of great benefit in allowing identification and extraction of relevant information on DDIs. We here propose an approach for the extraction of DDI from text using neural word embedding to train a machine learning system. Results show that our system is competitive against other systems for the task of extracting DDIs, and that significant improvements can be achieved by learning from word features and using a deep-learning approach. Our study demonstrates that machine learning techniques such as neural networks and deep learning methods can efficiently aid in IE from text. Our proposed approach is well suited to play a significant role in future research.


Author(s):  
Thang

In this research, we propose a method of human robot interactive intention prediction. The proposed algorithm makes use of a OpenPose library and a Long-short term memory deep learning neural network. The neural network observes the human posture in a time series, then predicts the human interactive intention. We train the deep neural network using dataset generated by us. The experimental results show that, our proposed method is able to predict the human robot interactive intention, providing 92% the accuracy on the testing set.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7786
Author(s):  
Sharnil Pandya ◽  
Aanchal Thakur ◽  
Santosh Saxena ◽  
Nandita Jassal ◽  
Chirag Patel ◽  
...  

The human immune system is very complex. Understanding it traditionally required specialized knowledge and expertise along with years of study. However, in recent times, the introduction of technologies such as AIoMT (Artificial Intelligence of Medical Things), genetic intelligence algorithms, smart immunological methodologies, etc., has made this process easier. These technologies can observe relations and patterns that humans do and recognize patterns that are unobservable by humans. Furthermore, these technologies have also enabled us to understand better the different types of cells in the immune system, their structures, their importance, and their impact on our immunity, particularly in the case of debilitating diseases such as cancer. The undertaken study explores the AI methodologies currently in the field of immunology. The initial part of this study explains the integration of AI in healthcare and how it has changed the face of the medical industry. It also details the current applications of AI in the different healthcare domains and the key challenges faced when trying to integrate AI with healthcare, along with the recent developments and contributions in this field by other researchers. The core part of this study is focused on exploring the most common classifications of health diseases, immunology, and its key subdomains. The later part of the study presents a statistical analysis of the contributions in AI in the different domains of immunology and an in-depth review of the machine learning and deep learning methodologies and algorithms that can and have been applied in the field of immunology. We have also analyzed a list of machine learning and deep learning datasets about the different subdomains of immunology. Finally, in the end, the presented study discusses the future research directions in the field of AI in immunology and provides some possible solutions for the same.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6494
Author(s):  
Jeremiah Abimbola ◽  
Daniel Kostrzewa ◽  
Pawel Kasprowski

This paper presents a thorough review of methods used in various research articles published in the field of time signature estimation and detection from 2003 to the present. The purpose of this review is to investigate the effectiveness of these methods and how they perform on different types of input signals (audio and MIDI). The results of the research have been divided into two categories: classical and deep learning techniques, and are summarized in order to make suggestions for future study. More than 110 publications from top journals and conferences written in English were reviewed, and each of the research selected was fully examined to demonstrate the feasibility of the approach used, the dataset, and accuracy obtained. Results of the studies analyzed show that, in general, the process of time signature estimation is a difficult one. However, the success of this research area could be an added advantage in a broader area of music genre classification using deep learning techniques. Suggestions for improved estimates and future research projects are also discussed.


Author(s):  
Nitin .

Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. In human interactions, the face is the most important factor as it contains important information about a person or individual. All humans have the ability to recognise individuals from their faces. Now following system is based on face recognition to maintain the attendance record of students. The daily attendance of students is recorded subject wise which is stored already by the administrator. As the time for corresponding subject arrives the system automatically starts taking snaps and then apply face detection and recognition technique to the given image and the recognize students are marked as present and their attendance update with corresponding time and subject id. We have used deep learning techniques to develop this system, histogram of oriented gradient method is used to detect faces in images and deep learning method is used to compute and compare facial feature of students to recognize them.


Sign in / Sign up

Export Citation Format

Share Document