scholarly journals The Neuroanatomy of Speech Sequencing at the Syllable Level

2018 ◽  
Author(s):  
Feng Rong ◽  
A. Lisette Isenberg ◽  
Erica Sun ◽  
Gregory Hickok

Correctly ordering a sequence of speech sounds is a crucial aspect of speech production. Although studies have yielded a rich body of data on the neural substrates of visuomotor sequencing and sequence learning, research on brain regions and their functions involving speech sequence production hasn’t attracted much attention until recently. Previous functional MRI studies manipulating the complexity of sequences at the phonemic, syllabic, and suprasyllabic levels have revealed a network of motor-related cortical and sub-cortical speech regions. In this study, we directly compared human brain activity measured with functional MRI during processing of a sequence of syllables compared with the same syllables processed individually. Among a network of regions independently identified as being part of the sensorimotor circuits for speech production, only the left posterior inferior frontal gyrus (pars opercularis, lIFG), the supplementary motor area (SMA), and the left inferior parietal lobe (lIPL) responded more during the production of syllable sequences compared to producing the same syllables articulated one at a time.

2021 ◽  
pp. 1-29
Author(s):  
Kangyu Jin ◽  
Zhe Shen ◽  
Guoxun Feng ◽  
Zhiyong Zhao ◽  
Jing Lu ◽  
...  

Abstract Objective: A few former studies suggested there are partial overlaps in abnormal brain structure and cognitive function between Hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear. Methods: 21 HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent Resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ. Results: Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL) and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG and left paracentral lobule but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MCCB in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients. Conclusion: our results suggested the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.


2020 ◽  
Vol 30 (7) ◽  
pp. 4076-4091
Author(s):  
Ryu Ohata ◽  
Tomohisa Asai ◽  
Hiroshi Kadota ◽  
Hiroaki Shigemasu ◽  
Kenji Ogawa ◽  
...  

Abstract The sense of agency is defined as the subjective experience that “I” am the one who is causing the action. Theoretical studies postulate that this subjective experience is developed through multistep processes extending from the sensorimotor to the cognitive level. However, it remains unclear how the brain processes such different levels of information and constitutes the neural substrates for the sense of agency. To answer this question, we combined two strategies: an experimental paradigm, in which self-agency gradually evolves according to sensorimotor experience, and a multivoxel pattern analysis. The combined strategies revealed that the sensorimotor, posterior parietal, anterior insula, and higher visual cortices contained information on self-other attribution during movement. In addition, we investigated whether the found regions showed a preference for self-other attribution or for sensorimotor information. As a result, the right supramarginal gyrus, a portion of the inferior parietal lobe (IPL), was found to be the most sensitive to self-other attribution among the found regions, while the bilateral precentral gyri and left IPL dominantly reflected sensorimotor information. Our results demonstrate that multiple brain regions are involved in the development of the sense of agency and that these show specific preferences for different levels of information.


2020 ◽  
Author(s):  
Irena T Schouwenaars ◽  
Miek J de Dreu ◽  
Geert-Jan M Rutten ◽  
Nick F Ramsey ◽  
Johan M Jansma

Abstract Background The main goal of this functional MRI (fMRI) study was to examine whether cognitive deficits in glioma patients prior to treatment are associated with abnormal brain activity in either the central executive network (CEN) or default mode network (DMN). Methods Forty-six glioma patients, and 23 group-matched healthy controls (HCs) participated in this fMRI experiment, performing an N-back task. Additionally, cognitive profiles of patients were evaluated outside the scanner. A region of interest–based analysis was used to compare brain activity in CEN and DMN between groups. Post hoc analyses were performed to evaluate differences between low-grade glioma (LGG) and high-grade glioma (HGG) patients. Results In-scanner performance was lower in glioma patients compared to HCs. Neuropsychological testing indicated cognitive impairment in LGG as well as HGG patients. fMRI results revealed normal CEN activation in glioma patients, whereas patients showed reduced DMN deactivation compared to HCs. Brain activity levels did not differ between LGG and HGG patients. Conclusions Our study suggests that cognitive deficits in glioma patients prior to treatment are associated with reduced responsiveness of the DMN, but not with abnormal CEN activation. These results suggest that cognitive deficits in glioma patients reflect a reduced capacity to achieve a brain state necessary for normal cognitive performance, rather than abnormal functioning of executive brain regions. Solely focusing on increases in brain activity may well be insufficient if we want to understand the underlying brain mechanism of cognitive impairments in patients, as our results indicate the importance of assessing deactivation.


2020 ◽  
Vol 61 (10) ◽  
pp. 1388-1397
Author(s):  
Yi Cheng ◽  
Li Yan ◽  
Liqun Hu ◽  
Hongyun Wu ◽  
Xin Huang ◽  
...  

Background Previous studies have linked high myopia (HM) to brain activity, and the difference between HM and low myopia (LM) can be assessed. Purpose To study the differences in functional networks of brain activity between HM and LM by the voxel-level degree centrality (DC) method. Material and Methods Twenty-eight patients with HM (10 men, 18 women), 18 patients with LM (4 men, 14 women), and 59 healthy controls (27 men, 32 women) were enrolled in this study. The voxel-level DC method was used to assess spontaneous brain activity. Correlation analysis was used to explore the change of average DC value in different brain regions, in order to analyze differences in brain activity between HM and LM. Results DC values of the right cerebellum anterior lobe/brainstem, right parahippocampal gyrus, and left caudate in HM patients were significantly higher than those in LM patients ( P < 0.05). In contrast, DC values of the left medial frontal gyrus, right inferior frontal gyrus, left middle frontal gyrus, and left inferior parietal lobule were significantly lower in patients with HM ( P < 0.05). However, there was no correlation between behavior and average DC values in different brain regions ( P < 0.05). Conclusion Different changes in brain regions between HM and LM may indicate differences in neural mechanisms between HM and LM. DC values could be useful as biomarkers for differences in brain activity between patients with HM and LM. This study provides a new method to assess differences in functional networks of brain activity between patients with HM and LM.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Chen Chen ◽  
Jian Zhang ◽  
Xiao-Wei Li ◽  
Wenqing Xia ◽  
Xu Feng ◽  
...  

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls.Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n=29) with normal hearing and well-matched healthy controls (n=30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress.Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r=0.459,P=0.012andr=0.479,P=0.009, resp.).Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


2022 ◽  
Author(s):  
Tie Sun ◽  
Hui-Ye Shu ◽  
Jie-Li Wu ◽  
Ting Su ◽  
Yu-Ji Liu ◽  
...  

Objective: The local characteristics of spontaneous brain activity in patients with dry eye (DE) and its relationship with clinical characteristics were evaluated using the amplitude of low-frequency fluctuations (ALFF) method. Methods: A total of 27 patients with DE (10 males and 17 females) and 28 healthy controls (HCs) (10 males and 18 females) were recruited, matched according to sex, age, weight, and height, classified into the DE and HC groups, and examined using functional magnetic resonance imaging scans. Spontaneous brain activity changes were recorded using ALFF technology. Data were recorded and plotted on the receiver operating characteristic curve, reflecting changes in activity in different brain areas. Finally, Pearson correlation analysis was used to calculate the potential relationship between spontaneous brain activity abnormalities in multiple brain regions and clinical features in patients with DE. GraphPad Prism 8 (GraphPad Software, Inc.) was used to analyze the linear correlation between the Hospital Anxiety and Depression Scale and ALFF value. Results: Compared with HCs, the ALFF values of patients with DE were decreased in the right middle frontal gyrus/right inferior orbitofrontal cortex, left triangle inferior frontal gyrus, left middle frontal gyrus, and right superior frontal gyrus. In contrast, the ALFF value of patients with DE was increased in the left calcarine. Conclusion: There are significant fluctuations in the ALFF value of specific brain regions in patients with DE versus HCs. This corroborates previous evidence showing that the symptoms of ocular surface damage in patients with DE are related to dysfunction in specific brain areas.


2021 ◽  
Author(s):  
Yoshiharu Ikutani ◽  
Takeshi D. Itoh ◽  
Takatomi Kubo

AbstractThe understanding of brain activity during program comprehension have advanced thanks to noninvasive neuroimaging techniques, such as functional magnetic resonance imaging (fMRI). However, individual neuroimaging studies of program comprehension often provided inconsistent results and made it difficult to identify the neural bases. To identify the essential brain regions, this study performed a small meta-analysis on recent fMRI studies of program comprehension using multilevel kernel density analysis (MKDA). Our analysis identified a set of brain regions consistently activated in various program comprehension tasks. These regions consisted of three clusters, each of which centered at the left inferior frontal gyrus pars triangularis (IFG Tri), posterior part of middle temporal gyrus (pMTG), and right middle frontal gyrus (MFG). Additionally, subsequent analyses revealed relationships among the activation patterns in the previous studies and multiple cognitive functions. These findings suggest that program comprehension mainly recycles the language-related networks and partially employs other domain-general resources in the human brain.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher N. Cascio ◽  
Nina Lauharatanahirun ◽  
Gwendolyn M. Lawson ◽  
Martha J. Farah ◽  
Emily B. Falk

AbstractResponse inhibition and socioeconomic status (SES) are critical predictors of many important outcomes, including educational attainment and health. The current study extends our understanding of SES and cognition by examining brain activity associated with response inhibition, during the key developmental period of adolescence. Adolescent males (N = 81), aged 16–17, completed a response inhibition task while undergoing fMRI brain imaging and reported on their parents’ education, one component of socioeconomic status. A region of interest analysis showed that parental education was associated with brain activation differences in the classic response inhibition network (right inferior frontal gyrus + subthalamic nucleus + globus pallidus) despite the absence of consistent parental education-performance effects. Further, although activity in our main regions of interest was not associated with performance differences, several regions that were associated with better inhibitory performance (ventromedial prefrontal cortex, middle frontal gyrus, middle temporal gyrus, amygdala/hippocampus) also differed in their levels of activation according to parental education. Taken together, these results suggest that individuals from households with higher versus lower parental education engage key brain regions involved in response inhibition to differing degrees, though these differences may not translate into performance differences.


2018 ◽  
Vol 31 (1) ◽  
pp. e000003
Author(s):  
Han Dai ◽  
Li Mei ◽  
Mei Minjun ◽  
Sun Xiaofei

BackgroundAlexithymia is a multidimensional personality construct.ObjectiveThis study aims to investigate the neuronal correlates of each alexithymia dimension by examining the regional homogeneity (ReHo) of intrinsic brain activity in a resting situation.MethodsFrom university freshmen, students with alexithymia and non-alexithymia were recruited. Their alexithymic traits were assessed using the Toronto Alexithymia Scale-20. The ReHo was examined using a resting-state functional MRI approach.ResultsThis study suggests significant group differences in ReHo in multiple brain regions distributed in the frontal lobe, parietal lobe, temporal lobe, occipital lobe and insular cortex. However, only the ReHo in the insula was positively associated with difficulty identifying feelings, a main dimension of alexithymia. The ReHo in the lingual gyrus, precentral gyrus and postcentral gyrus was positively associated with difficulty describing feelings in participants with alexithymia. Lastly, the ReHo in the right dorsomedial prefrontal cortex (DMPFC_R) was negatively related to the externally oriented thinking style of participants with alexithymia.ConclusionIn conclusion, these results suggest that the main dimensions of alexithymia are correlated with specific brain regions’ function, and the role of the insula, lingual gyrus, precentral gyrus, postcentral gyrus and DMPFC_R in the neuropathology of alexithymia should be further investigated.


2011 ◽  
Vol 23 (12) ◽  
pp. 4067-4081 ◽  
Author(s):  
Brenda Rapp ◽  
Olivier Dufor

This research is directed at charting the neurotopography of the component processes of the spelling system by using fMRI to identify the neural substrates that are sensitive to the factors of lexical frequency and word length. In spelling, word frequency effects index orthographic long-term memory whereas length effects, as measured by the number of letters, index orthographic working memory (grapheme buffering). Using the task of spelling to dictation in the scanner, we found a highly differentiated neural distribution of sensitivity to the factors of length and lexical frequency, with areas exhibiting sensitivity to length but not frequency and vice versa. In addition, a direct comparison with the results of a previous study [Rapp, B., & Lipka, K. The literate brain: The relationship between spelling and reading. Journal of Cognitive Neuroscience, 23, 1180–1197, 2011] that used a very different spelling task yielded a converging pattern of findings regarding the neural substrates of the central components of spelling. Also, with regard to relationship between reading and spelling, we replicated previous functional neuroimaging studies that have shown overlapping regions of activation in the left posterior inferior frontal gyrus and midfusiform gyrus for word reading and spelling.


Sign in / Sign up

Export Citation Format

Share Document