scholarly journals Neural Correlates of Familiar and Unfamiliar Action in Infancy

2022 ◽  
Author(s):  
Haerin Chung ◽  
Marlene Meyer ◽  
Ranjan Debnath ◽  
Nathan Fox ◽  
Amanda Woodward

Behavioral evidence shows that experience with an action shapes action perception. Neural mirroring has been suggested as a mechanism underlying this behavioral phenomenon. Suppression of EEG power in the mu frequency band, an index of motor activation, typically reflects neural mirroring. However, contradictory findings exist regarding the association between mu suppression and motor familiarity in infant EEG studies. In this study, we investigated the neural underpinnings reflecting the role of familiarity on action perception. We measured neural processing of familiar (grasp) and novel (tool-use) actions in 9-and-12-month-old infants. Specifically, we measured infants’ distinct motor/visual activity and explored functional connectivity associated with these processes. Mu suppression was stronger for grasping than tool-use, while significant mu and occipital alpha (indexing visual activity) suppression were evident for both actions. Interestingly, selective visual-motor functional connectivity was found during observation of familiar action, a pattern not observed for novel action. Thus, the neural correlates of perception of familiar actions may be best understood in terms of a functional neural network, rather than isolated regional activity.Our findings provide novel insights on analytic approaches for identifying motor-specific neural activity while also considering neural networks involved in observing motorically familiar versus actions.

2013 ◽  
Vol 15 (4) ◽  
pp. 487-490 ◽  

Autobiographical memory (AM) defines the memory systems that encode, consolidate, and retrieve personal events and facts, AM is strongly related to self-perception and self representation. We review here the neural correlates of AM retrieval. AM retrieval encompasses a large neural network including the prefrontal, temporal, and parietal cortex, and limbic structures. All these regions subserve the cognitive processes (episodic remembering, cognitive control, self-processing, and scene construction) at play during memory retrieval. We emphasize the specific role of medial prefrontal cortex and precuneus in self-processing during autobiographical memory retrieval. Overall, these data call for further studies in psychiatric patients, to investigate the neural underpinnings of autobiographical memory and self-representation in mental disorders.


2019 ◽  
Author(s):  
Ozge Karakale ◽  
Matthew R. Moore ◽  
Nicolas McNair ◽  
Ian J. Kirk

AbstractActions are rarely devoid of emotional content. Thus, a more complete picture of the neural mechanisms underlying mental simulation of observed actions requires more research using emotion information. The present study used electroencephalography (EEG) to investigate mental simulation associated with facial emotion categorisation. Mu rhythm modulation was measured to infer the degree of sensorimotor simulation. Categorising static images of neutral faces as happy or sad was associated with stronger mu suppression than categorising clearly happy or sad faces. Results suggest the sensitivity of the sensorimotor activity to emotional information rather than visual attentional engagement, because further control analyses revealed (1) no effect of emotion type on occipital alpha modulation, and (2) no difference in mu modulation between the conditions of a control task, which required categorising images with the head oriented right, left, or forward as right or left. This finding provides evidence for the role of the sensorimotor activity in a higher form of mental simulation. Consistent with a predictive coding account of action perception, stronger mu suppression during attempted emotion categorisation of neutral faces may involve minimising the mismatch between predicted kinematics of a happy/sad face and the observed stationarity of neutral faces.


2017 ◽  
Author(s):  
Roel M. Willems ◽  
Franziska Hartung

Behavioral evidence suggests that engaging with fiction is positively correlated with social abilities. The rationale behind this link is that engaging with fictional narratives offers a ‘training modus’ for mentalizing and empathizing. We investigated the influence of the amount of reading that participants report doing in their daily lives, on connections between brain areas while they listened to literary narratives. Participants (N=57) listened to two literary narratives while brain activation was measured with fMRI. We computed time-course correlations between brain regions, and compared the correlation values from listening to narratives to listening to reversed speech. The between-region correlations were then related to the amount of fiction that participants read in their daily lives. Our results show that amount of fiction reading is related to functional connectivity in areas known to be involved in language and mentalizing. This suggests that reading fiction influences social cognition as well as language skills.


Author(s):  
Lisa Bartha-Doering ◽  
Ernst Schwartz ◽  
Kathrin Kollndorfer ◽  
Florian Ph. S. Fischmeister ◽  
Astrid Novak ◽  
...  

AbstractThe present study is interested in the role of the corpus callosum in the development of the language network. We, therefore, investigated language abilities and the language network using task-based fMRI in three cases of complete agenesis of the corpus callosum (ACC), three cases of partial ACC and six controls. Although the children with complete ACC revealed impaired functions in specific language domains, no child with partial ACC showed a test score below average. As a group, ACC children performed significantly worse than healthy controls in verbal fluency and naming. Furthermore, whole-brain ROI-to-ROI connectivity analyses revealed reduced intrahemispheric and right intrahemispheric functional connectivity in ACC patients as compared to controls. In addition, stronger functional connectivity between left and right temporal areas was associated with better language abilities in the ACC group. In healthy controls, no association between language abilities and connectivity was found. Our results show that ACC is associated not only with less interhemispheric, but also with less right intrahemispheric language network connectivity in line with reduced verbal abilities. The present study, thus, supports the excitatory role of the corpus callosum in functional language network connectivity and language abilities.


2019 ◽  
Vol 29 (12) ◽  
pp. 5049-5060 ◽  
Author(s):  
Kainan S Wang ◽  
Mauricio R Delgado

AbstractThe ability to perceive and exercise control over an outcome is both desirable and beneficial to our well-being. It has been shown that animals and humans alike exhibit behavioral bias towards seeking control and that such bias recruits the ventromedial prefrontal cortex (vmPFC) and striatum. Yet, this bias remains to be quantitatively captured and studied neurally. Here, we employed a behavioral task to measure the preference for control and characterize its neural underpinnings. Participants made a series of binary choices between having control and no-control over a game for monetary reward. The mere presence of the control option evoked activity in the ventral striatum. Importantly, we manipulated the expected value (EV) of each choice pair to extract the pairing where participants were equally likely to choose either option. The difference in EV between the options at this point of equivalence was inferred as the subjective value of control. Strikingly, perceiving control inflated the reward value of the associated option by 30% and this value inflation was tracked by the vmPFC. Altogether, these results capture the subjective value of perceived control inherent in decision making and highlight the role of corticostriatal circuitry in the perception of control.


Endocrinology ◽  
2014 ◽  
Vol 155 (11) ◽  
pp. 4356-4367 ◽  
Author(s):  
Jennifer E. Richard ◽  
Imre Farkas ◽  
Fredrik Anesten ◽  
Rozita H. Anderberg ◽  
Suzanne L. Dickson ◽  
...  

Abstract The parabrachial nucleus (PBN) is a key nucleus for the regulation of feeding behavior. Inhibitory inputs from the hypothalamus to the PBN play a crucial role in the normal maintenance of feeding behavior, because their loss leads to starvation. Viscerosensory stimuli result in neuronal activation of the PBN. However, the origin and neurochemical identity of the excitatory neuronal input to the PBN remain largely unexplored. Here, we hypothesize that hindbrain glucagon-like peptide 1 (GLP-1) neurons provide excitatory inputs to the PBN, activation of which may lead to a reduction in feeding behavior. Our data, obtained from mice expressing the yellow fluorescent protein in GLP-1-producing neurons, revealed that hindbrain GLP-1-producing neurons project to the lateral PBN (lPBN). Stimulation of lPBN GLP-1 receptors (GLP-1Rs) reduced the intake of chow and palatable food and decreased body weight in rats. It also activated lPBN neurons, reflected by an increase in the number of c-Fos-positive cells in this region. Further support for an excitatory role of GLP-1 in the PBN is provided by electrophysiological studies showing a remarkable increase in firing of lPBN neurons after Exendin-4 application. We show that within the PBN, GLP-1R activation increased gene expression of 2 energy balance regulating peptides, calcitonin gene-related peptide (CGRP) and IL-6. Moreover, nearly 70% of the lPBN GLP-1 fibers innervated lPBN CGRP neurons. Direct intra-lPBN CGRP application resulted in anorexia. Collectively, our molecular, anatomical, electrophysiological, pharmacological, and behavioral data provide evidence for a functional role of the GLP-1R for feeding control in the PBN.


2021 ◽  
Vol 11 (6) ◽  
pp. 728
Author(s):  
Omar Singleton ◽  
Max Newlon ◽  
Andres Fossas ◽  
Beena Sharma ◽  
Susanne R. Cook-Greuter ◽  
...  

Jane Loevinger’s theory of adult development, termed ego development (1966) and more recently maturity development, provides a useful framework for understanding the development of the self throughout the lifespan. However, few studies have investigated its neural correlates. In the present study, we use structural and functional magnetic resonance imaging (MRI) to investigate the neural correlates of maturity development in contemplative practitioners and controls. Since traits possessed by individuals with higher levels of maturity development are similar to those attributed to individuals at advanced stages of contemplative practice, we chose to investigate levels of maturity development in meditation practitioners as well as matched controls. We used the Maturity Assessment Profile (MAP) to measure maturity development in a mixed sample of participants composed of 14 long-term meditators, 16 long-term yoga practitioners, and 16 demographically matched controls. We investigated the relationship between contemplative practice and maturity development with behavioral, seed-based resting state functional connectivity, and cortical thickness analyses. The results of this study indicate that contemplative practitioners possess higher maturity development compared to a matched control group, and in addition, maturity development correlates with cortical thickness in the posterior cingulate. Furthermore, we identify a brain network implicated in theory of mind, narrative, and self-referential processing, comprising the posterior cingulate cortex, dorsomedial prefrontal cortex, temporoparietal junction, and inferior frontal cortex, as a primary neural correlate.


Sign in / Sign up

Export Citation Format

Share Document