scholarly journals ChiCo: A Multimodal Corpus for the Study of Child Conversation

2021 ◽  
Author(s):  
Kübra Bodur ◽  
Mitja Nikolaus ◽  
Fatima Kassim ◽  
Laurent Prévot ◽  
Abdellah Fourtassi

The study of how children develop their conversational skills is an important scientific frontier at the crossroad of social, cognitive, and linguistic development with important applications in health, education, and child-oriented AI. While recent advances in machine learning techniques allow us to develop formal theories of conversational development in real-life contexts, progress has been slowed down by the lack of corpora that both approximate naturalistic interaction and provide clear access to children’s non-verbal behavior in face-to-face conversations. This work is an effort to fill this gap. We introduce ChiCo (for Child Conversation), a corpus we built using an online video chat system. Using a weakly structured task (a word-guessing game), we recorded 20 conversations involving either children in middle childhood (i.e., 6 to 12 years old) interacting with their caregivers (condition of interest) or the same caregivers interacting with other adults (a control condition), resulting in 40 individual recordings. Our annotation of these videos has shown that the frequency of children’s use of gaze, gesture, and facial expressions mirrors that of adults. Future modeling research can capitalize on this rich behavioral data to study how both verbal and non-verbal cues contribute to the development of conversational coordination

2021 ◽  
Vol 14 (3) ◽  
pp. 1-21
Author(s):  
Roy Abitbol ◽  
Ilan Shimshoni ◽  
Jonathan Ben-Dov

The task of assembling fragments in a puzzle-like manner into a composite picture plays a significant role in the field of archaeology as it supports researchers in their attempt to reconstruct historic artifacts. In this article, we propose a method for matching and assembling pairs of ancient papyrus fragments containing mostly unknown scriptures. Papyrus paper is manufactured from papyrus plants and therefore portrays typical thread patterns resulting from the plant’s stems. The proposed algorithm is founded on the hypothesis that these thread patterns contain unique local attributes such that nearby fragments show similar patterns reflecting the continuations of the threads. We posit that these patterns can be exploited using image processing and machine learning techniques to identify matching fragments. The algorithm and system which we present support the quick and automated classification of matching pairs of papyrus fragments as well as the geometric alignment of the pairs against each other. The algorithm consists of a series of steps and is based on deep-learning and machine learning methods. The first step is to deconstruct the problem of matching fragments into a smaller problem of finding thread continuation matches in local edge areas (squares) between pairs of fragments. This phase is solved using a convolutional neural network ingesting raw images of the edge areas and producing local matching scores. The result of this stage yields very high recall but low precision. Thus, we utilize these scores in order to conclude about the matching of entire fragments pairs by establishing an elaborate voting mechanism. We enhance this voting with geometric alignment techniques from which we extract additional spatial information. Eventually, we feed all the data collected from these steps into a Random Forest classifier in order to produce a higher order classifier capable of predicting whether a pair of fragments is a match. Our algorithm was trained on a batch of fragments which was excavated from the Dead Sea caves and is dated circa the 1st century BCE. The algorithm shows excellent results on a validation set which is of a similar origin and conditions. We then tried to run the algorithm against a real-life set of fragments for which we have no prior knowledge or labeling of matches. This test batch is considered extremely challenging due to its poor condition and the small size of its fragments. Evidently, numerous researchers have tried seeking matches within this batch with very little success. Our algorithm performance on this batch was sub-optimal, returning a relatively large ratio of false positives. However, the algorithm was quite useful by eliminating 98% of the possible matches thus reducing the amount of work needed for manual inspection. Indeed, experts that reviewed the results have identified some positive matches as potentially true and referred them for further investigation.


Author(s):  
Hesham M. Al-Ammal

Detection of anomalies in a given data set is a vital step in several applications in cybersecurity; including intrusion detection, fraud, and social network analysis. Many of these techniques detect anomalies by examining graph-based data. Analyzing graphs makes it possible to capture relationships, communities, as well as anomalies. The advantage of using graphs is that many real-life situations can be easily modeled by a graph that captures their structure and inter-dependencies. Although anomaly detection in graphs dates back to the 1990s, recent advances in research utilized machine learning methods for anomaly detection over graphs. This chapter will concentrate on static graphs (both labeled and unlabeled), and the chapter summarizes some of these recent studies in machine learning for anomaly detection in graphs. This includes methods such as support vector machines, neural networks, generative neural networks, and deep learning methods. The chapter will reflect the success and challenges of using these methods in the context of graph-based anomaly detection.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Rafael Vega Vega ◽  
Héctor Quintián ◽  
Carlos Cambra ◽  
Nuño Basurto ◽  
Álvaro Herrero ◽  
...  

Present research proposes the application of unsupervised and supervised machine-learning techniques to characterize Android malware families. More precisely, a novel unsupervised neural-projection method for dimensionality-reduction, namely, Beta Hebbian Learning (BHL), is applied to visually analyze such malware. Additionally, well-known supervised Decision Trees (DTs) are also applied for the first time in order to improve characterization of such families and compare the original features that are identified as the most important ones. The proposed techniques are validated when facing real-life Android malware data by means of the well-known and publicly available Malgenome dataset. Obtained results support the proposed approach, confirming the validity of BHL and DTs to gain deep knowledge on Android malware.


Author(s):  
Ruchi Mittal ◽  
M.P.S Bhatia

Nowadays, social media is one of the popular modes of interaction and information diffusion. It is commonly found that the main source of information diffusion is done by some entities and such entities are also called as influencers. An influencer is an entity or individual who has the ability to influence others because of his/her relationship or connection with his/her audience. In this article, we propose a methodology to classify influencers from multi-layer social networks. A multi-layer social network is the same as a single layer social network depict that it includes multiple properties of a node and modeled them into multiple layers. The proposed methodology is a fusion of machine learning techniques (SVM, neural networks and so on) with centrality measures. We demonstrate the proposed algorithm on some real-life networks to validate the effectiveness of the approach in multi-layer systems.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 499 ◽  
Author(s):  
Iqbal H. Sarker ◽  
Yoosef B. Abushark ◽  
Asif Irshad Khan

This paper mainly formulates the problem of predicting context-aware smartphone apps usage based on machine learning techniques. In the real world, people use various kinds of smartphone apps differently in different contexts that include both the user-centric context and device-centric context. In the area of artificial intelligence and machine learning, decision tree model is one of the most popular approaches for predicting context-aware smartphone usage. However, real-life smartphone apps usage data may contain higher dimensions of contexts, which may cause several issues such as increases model complexity, may arise over-fitting problem, and consequently decreases the prediction accuracy of the context-aware model. In order to address these issues, in this paper, we present an effective principal component analysis (PCA) based context-aware smartphone apps prediction model, “ContextPCA” using decision tree machine learning classification technique. PCA is an unsupervised machine learning technique that can be used to separate symmetric and asymmetric components, and has been adopted in our “ContextPCA” model, in order to reduce the context dimensions of the original data set. The experimental results on smartphone apps usage datasets show that “ContextPCA” model effectively predicts context-aware smartphone apps in terms of precision, recall, f-score and ROC values in various test cases.


Author(s):  
Moksheeth Padarthy ◽  
Mohammed Sami ◽  
Emiliano Heyns

One of the main challenges for road authorities is to maintain the quality of the road infrastructure. Road anomalies can have a significant impact on traffic flow, the condition of vehicles, and the comfort of occupants of vehicles. Strategies such as pavement management systems use pavement evaluation vehicles that are equipped with state-of-the-art devices to assist road authorities in identifying and repairing these anomalies. The quantity of data available is limited, however, by the limited availability and, therefore, coverage of these vehicles. To address this problem, several investigations have been conducted on the use of smartphones or equipping vehicles with additional sensors to identify the presence of road anomalies. This paper aims to add to this arsenal by using sensors already available in production vehicles to identify road anomalies. If production vehicles could be used to identify road anomalies, then road authorities would be equipped with an additional fleet of mobile sensors (vehicles traveling on a particular road) to receive initial insights into the presence of anomalies. This information could then be used to assist road authorities to deploy their staff and equipment more precisely at these locations, such that appropriate equipment reaches the right place at the right time. In this paper, an algorithm that uses lateral acceleration and individual wheel speed signals, which are commonly available vehicular variables, was developed to detect potholes using machine learning techniques. The results of the algorithm were validated with real life test scenarios.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3113 ◽  
Author(s):  
Miguel Ángel Antón ◽  
Joaquín Ordieres-Meré ◽  
Unai Saralegui ◽  
Shengjing Sun

This paper aims to contribute to the field of ambient intelligence from the perspective of real environments, where noise levels in datasets are significant, by showing how machine learning techniques can contribute to the knowledge creation, by promoting software sensors. The created knowledge can be actionable to develop features helping to deal with problems related to minimally labelled datasets. A case study is presented and analysed, looking to infer high-level rules, which can help to anticipate abnormal activities, and potential benefits of the integration of these technologies are discussed in this context. The contribution also aims to analyse the usage of the models for the transfer of knowledge when different sensors with different settings contribute to the noise levels. Finally, based on the authors’ experience, a framework proposal for creating valuable and aggregated knowledge is depicted.


2021 ◽  
Vol 4 (3) ◽  
pp. 139-143
Author(s):  
Mariana Vlad ◽  
◽  
Sorin Vlad ◽  

Machine learning (ML) is a subset of artificial Intelligence (AI) aiming to develop systems that can learn and continuously improve the abilities through generalization in an autonomous manner. ML is presently all around us, almost every facet of our digital and real life is embedding some ML related content. Customer recommendation systems, customer behavior prediction, fraud detection, speech recognition, image recognition, black & white movies colorization, accounting fraud detection are just some examples of the vast range of applications in which ML is involved. The techniques that this paper investigates are mainly focused on the use of neural networks in accounting and finance research fields. An artificial neural network is modelling the brain ability of learning intricate patterns from the information presented at its inputs using elementary interconnected units, named neurons, grouped in layers and trained by means of a learning algorithm. The performance of the network depends on many factors like the number of layers, the number of each neurons in each layer, the learning algorithm, activation functions, to name just a few of them. Machine learning algorithms have already started to replace humans in jobs that require document’s processing and decision making.


2018 ◽  
Author(s):  
Alicia Heraz ◽  
Manfred Clynes

BACKGROUND Emotions affect our mental health: they influence our perception, alter our physical strength, and interfere with our reason. Emotions modulate our face, voice, and movements. When emotions are expressed through the voice or face, they are difficult to measure because cameras and microphones are not often used in real life in the same laboratory conditions where emotion detection algorithms perform well. With the increasing use of smartphones, the fact that we touch our phones, on average, thousands of times a day, and that emotions modulate our movements, we have an opportunity to explore emotional patterns in passive expressive touches and detect emotions, enabling us to empower smartphone apps with emotional intelligence. OBJECTIVE In this study, we asked 2 questions. (1) As emotions modulate our finger movements, will humans be able to recognize emotions by only looking at passive expressive touches? (2) Can we teach machines how to accurately recognize emotions from passive expressive touches? METHODS We were interested in 8 emotions: anger, awe, desire, fear, hate, grief, laughter, love (and no emotion). We conducted 2 experiments with 2 groups of participants: good imagers and emotionally aware participants formed group A, with the remainder forming group B. In the first experiment, we video recorded, for a few seconds, the expressive touches of group A, and we asked group B to guess the emotion of every expressive touch. In the second experiment, we trained group A to express every emotion on a force-sensitive smartphone. We then collected hundreds of thousands of their touches, and applied feature selection and machine learning techniques to detect emotions from the coordinates of participant’ finger touches, amount of force, and skin area, all as functions of time. RESULTS We recruited 117 volunteers: 15 were good imagers and emotionally aware (group A); the other 102 participants formed group B. In the first experiment, group B was able to successfully recognize all emotions (and no emotion) with a high 83.8% (769/918) accuracy: 49.0% (50/102) of them were 100% (450/450) correct and 25.5% (26/102) were 77.8% (182/234) correct. In the second experiment, we achieved a high 91.11% (2110/2316) classification accuracy in detecting all emotions (and no emotion) from 9 spatiotemporal features of group A touches. CONCLUSIONS Emotions modulate our touches on force-sensitive screens, and humans have a natural ability to recognize other people’s emotions by watching prerecorded videos of their expressive touches. Machines can learn the same emotion recognition ability and do better than humans if they are allowed to continue learning on new data. It is possible to enable force-sensitive screens to recognize users’ emotions and share this emotional insight with users, increasing users’ emotional awareness and allowing researchers to design better technologies for well-being.


2021 ◽  
Author(s):  
Pittawat Taveekitworachai ◽  
Jonathan H. Chan

The Krathu-500 contains 574 Pantip posts title, post body with all comments of each post. The number of total comments is at 63,293 comments. The corpus provide Thai language used in real life situation with various context and types in conversational form. The corpus serves as a good way to improve capability of machine learning techniques that dealing with Thai language. Sentiment labeled smaller version of the comments dataset also provided with 6,306 records. The labeled corpus is human-annotated dataset with three labels for negative, neutral, and positive comments. The project also consists of open-source repository that allow any people who interested to modify and built on top of the current source code and dataset.


Sign in / Sign up

Export Citation Format

Share Document