scholarly journals Changes in functional connectivity associated with facial expression processing over the working adult lifespan

2021 ◽  
Author(s):  
Thomas Murray ◽  
Justin O'Brien ◽  
Veena Kumari

The recognition of negative emotions from facial expressions is shown to decline across the adult lifespan, with some evidence that this decline begins around middle age. While some studies have suggested ageing may be associated with changes in neural response to emotional expressions, it is not known whether ageing is associated with changes in the network connectivity associated with processing emotional expressions. In this study, we examined the effect of participant age on whole-brain connectivity to various brain regions that have been associated with connectivity during emotion processing: the left and right amygdalae, medial prefrontal cortex (mPFC), and right posterior superior temporal sulcus (rpSTS). The study involved healthy participants aged 20-65 who viewed facial expressions displaying anger, fear, happiness, and neutral expressions during functional magnetic resonance imaging (fMRI). We found effects of age on connectivity between the left amygdala and voxels in the occipital pole and cerebellum, between the right amygdala and voxels in the frontal pole, and between the rpSTS and voxels in the orbitofrontal cortex, but no effect of age on connectivity with the mPFC. Furthermore, ageing was more greatly associated with a decline in connectivity to the left amygdala and rpSTS for negative expressions in comparison to happy and neutral expressions, consistent with the literature suggesting a specific age-related decline in the recognition of negative emotions. These results add to the literature surrounding ageing and expression recognition by suggesting that changes in underlying functional connectivity might contribute to changes in recognition of negative facial expressions across the adult lifespan.

2019 ◽  
Vol 13 ◽  
pp. 117906951985180 ◽  
Author(s):  
Tonya White ◽  
Vince D. Calhoun

The ability to measure the intrinsic functional architecture of the brain has grown exponentially over the last 2 decades. Measures of intrinsic connectivity within the brain, typically measured using resting-state functional magnetic resonance imaging (MRI), have evolved from primarily “static” approaches, to include dynamic measures of functional connectivity. Measures of dynamic functional connectivity expand the assumptions to allow brain regions to have temporally different patterns of communication between different regions. That is, connections within the brain can differentially fire between different regions at different times, and these differences can be quantified. Applying approaches that measure the dynamic characteristics of functional brain connectivity have been fruitful in identifying differences during brain development and psychopathology. We provide a brief overview of static and dynamic measures of functional connectivity and illustrate the synergy in applying these approaches to identify both age-related differences in children and differences between typically developing children and children with autistic symptoms.


2021 ◽  
pp. 216770262110302
Author(s):  
M. Justin Kim ◽  
Maxwell L. Elliott ◽  
Annchen R. Knodt ◽  
Ahmad R. Hariri

Past research on the brain correlates of trait anger has been limited by small sample sizes, a focus on relatively few regions of interest, and poor test–retest reliability of functional brain measures. To address these limitations, we conducted a data-driven analysis of variability in connectome-wide functional connectivity in a sample of 1,048 young adult volunteers. Multidimensional matrix regression analysis showed that self-reported trait anger maps onto variability in the whole-brain functional connectivity patterns of three brain regions that serve action-related functions: bilateral supplementary motor areas and the right lateral frontal pole. We then demonstrate that trait anger modulates the functional connectivity of these regions with canonical brain networks supporting somatomotor, affective, self-referential, and visual information processes. Our findings offer novel neuroimaging evidence for interpreting trait anger as a greater propensity to provoked action, which supports ongoing efforts to understand its utility as a potential transdiagnostic marker for disordered states characterized by aggressive behavior.


2021 ◽  
Author(s):  
Andrew Lynn ◽  
Eric D. Wilkey ◽  
Gavin Price

The human brain comprises multiple canonical networks, several of which are distributed across frontal, parietal, and temporooccipital regions. Studies report both positive and negative correlations between children’s math skills and the strength of functional connectivity among these regions during math-related tasks and at rest. Yet, it is unclear how the relation between children’s math skills and functional connectivity map onto patterns of distributed whole-brain connectivity, canonical network connectivity, and whether these relations are consistent across different task-states. We used connectome-based predictive modeling to test whether functional connectivity during number comparison and at rest predicts children’s math skills (N=31, Mage=9.21years) using distributed whole-brain connections versus connections among canonical networks. We found that weaker connectivity distributed across the whole brain and weaker connectivity between key math-related brain regions in specific canonical networks predicts better math skills in childhood. The specific connections predicting math skills, and whether they were distributed or mapped onto canonical networks, varied between tasks, suggesting that state-dependent rather than trait-level functional network architectures support children’s math skills. Furthermore, the current predictive modeling approach moves beyond brain-behavior correlations and toward building models of brain connectivity that may eventually aid in predicting future math skills.


Author(s):  
Hana Burianová

Determining the mechanisms that underlie neurocognitive aging, such as compensation or dedifferentiation, and facilitating the development of effective strategies for cognitive improvement is essential due to the steadily rising aging population. One approach to study the characteristics of healthy aging comprises the assessment of functional connectivity, delineating markers of age-related neurocognitive plasticity. Functional connectivity paradigms characterize complex one-to-many (or many-to-many) structure–function relations, as higher-level cognitive processes are mediated by the interaction among a number of functionally related neural areas rather than localized to discrete brain regions. Task-related or resting-state interregional correlations of brain activity have been used as reliable indices of functional connectivity, delineating age-related alterations in a number of large-scale brain networks, which subserve attention, working memory, episodic retrieval, and task-switching. Together with behavioral and regional activation studies, connectivity studies and modeling approaches have contributed to our understanding of the mechanisms of age-related reorganization of distributed functional networks; specifically, reduced neural specificity (dedifferentiation) and associated impairment in inhibitory control and compensatory neural recruitment.


2019 ◽  
Vol 8 (4) ◽  
pp. 487 ◽  
Author(s):  
Billeci ◽  
Calderoni ◽  
Conti ◽  
Lagomarsini ◽  
Narzisi ◽  
...  

Autism Spectrum Disorders (ASD) is a group of neurodevelopmental disorders that is characterized by an altered brain connectivity organization. Autistic traits below the clinical threshold (i.e., the broad autism phenotype; BAP) are frequent among first-degree relatives of subjects with ASD; however, little is known regarding whether subthreshold behavioral manifestations of ASD mirror also at the neuroanatomical level in parents of ASD probands. To this aim, we applied advanced diffusion network analysis to MRI of 16 dyads consisting of a child with ASD and his father in order to investigate: (i) the correlation between structural network organization and autistic features in preschoolers with ASD (all males; age range 1.5–5.2 years); (ii) the correlation between structural network organization and BAP features in the fathers of individuals with ASD (fath-ASD). Local network measures significantly correlated with autism severity in ASD children and with BAP traits in fath-ASD, while no significant association emerged when considering the global measures of brain connectivity. Notably, an overlap of some brain regions that are crucial for social functioning (cingulum, superior temporal gyrus, inferior temporal gyrus, middle frontal gyrus, frontal pole, and amygdala) in patients with ASD and fath-ASD was detected, suggesting an intergenerational transmission of these neural substrates. Overall, the results of this study may help in elucidating the neurostructural endophenotype of ASD, paving the way for bridging connections between underlying genetic and ASD symptomatology.


2019 ◽  
Author(s):  
Jonathan F. O’Rawe ◽  
Hoi-Chung Leung

AbstractDescribing the pattern of region-to-region functional connectivity is an important step towards understanding information transfer and transformation between brain regions. Although fMRI data are limited in spatial resolution, recent advances in technology afford more precise mapping. Here, we extended previous methods, connective field mapping, to 3 dimensions to provide a more concise estimate of the organization and potential information transformation from one region to another. We first replicated previous work with the 3 dimensional model by showing that the topology of functional connectivity between early visual regions maintained along their eccentricity axis or the anterior-posterior dimension. We then examined higher order visual regions (e,g, fusiform face area) and showed that their pattern of connectivity, the convergence and biased sampling, seem to contribute to some of their core receptive field properties. We further demonstrated that linearity of input is a fundamental aspect of functional connectivity of the whole brain, with higher linearity between regions within a network than across networks; that is, high connective linearity was evident between early visual areas, and between prefrontal areas, but less evident between them. By decomposing the whole brain linearity matrix with manifold learning techniques, we found that the principle mode of the linearity maps onto decompositions in both functional connectivity and genetic expression reported in previous studies. The current work provides evidence supporting that linearity of input is likely a fundamental motif of functional connectivity between regions for information processing across the brain, with high linearity preserving the integrity of information from one region to another within a network.


2019 ◽  
Author(s):  
František Váša ◽  
Rafael Romero-Garcia ◽  
Manfred G. Kitzbichler ◽  
Jakob Seidlitz ◽  
Kirstie J. Whitaker ◽  
...  

AbstractAdolescent changes in human brain function are not entirely understood. Here we used multi-echo functional magnetic resonance imaging (fMRI) to measure developmental change in functional connectivity (FC) of resting-state oscillations between pairs of 330 cortical regions and 16 subcortical regions in N=298 healthy adolescents. Participants were aged 14-26 years and were scanned on two or more occasions at least 6 months apart. We found two distinct modes of age-related change in FC: “conservative” and “disruptive”. Conservative development was characteristic of primary cortex, which was strongly connected at 14 years and became even more connected in the period 14-26 years. Disruptive development was characteristic of association cortex, hippocampus and amygdala, which were not strongly connected at 14 years but became more strongly connected during adolescence. We defined the maturational index (MI) as the signed coefficient of the linear relationship between baseline FC (at 14 years,FC14) and adolescent change in FC (∆FC14−26). Disruptive systems (with negative MI) were functionally specialised for social cognition and autobiographical memory and were significantly co-located with prior maps of aerobic glycolysis (AG), AG-related gene expression, post-natal expansion of cortical surface area, and adolescent shrinkage of cortical depth. We conclude that human brain organization is disrupted during adolescence by the emergence of strong functional connectivity of subcortical nuclei and association cortical areas, representing metabolically expensive re-modelling of synaptic connectivity between brain regions that were not strongly connected in childhood. We suggest that this re-modelling process may support emergence of social skills and self-awareness during healthy human adolescence.


2021 ◽  
Author(s):  
Fatima zahra Benabdallah ◽  
Ahmed Drissi El Maliani ◽  
Dounia Lotfi ◽  
Rachid Jennane ◽  
Mohammed El hassouni

Abstract Autism spectrum disorder (ASD) is theoretically characterized by alterations in functional connectivity between brain regions. Many works presented approaches to determine informative patterns that help to predict autism from typical development. However, most of the proposed pipelines are not specifically designed for the autism problem, i.e they do not corroborate with autism theories about functional connectivity. In this paper, we propose a framework that takes into account the properties of local connectivity and long range under-connectivity in the autistic brain. The originality of the proposed approach is to adopt elimination as a technique in order to well emerge the autistic brain connectivity alterations, and show how they contribute to differentiate ASD from controls. Experimental results conducted on the large multi-site Autism Brain Imaging Data Exchange (ABIDE) show that our approach provides accurate prediction up to 70% and succeeds to prove the existence of deficits in the long-range connectivity in the ASD subjects brains.


2018 ◽  
Author(s):  
J. Zimmermann ◽  
J.G. Griffiths ◽  
A.R. McIntosh

AbstractThe unique mapping of structural and functional brain connectivity (SC, FC) on cognition is currently not well understood. It is not clear whether cognition is mapped via a global connectome pattern or instead is underpinned by several sets of distributed connectivity patterns. Moreover, we also do not know whether the pattern of SC and of FC that underlie cognition are overlapping or distinct. Here, we study the relationship between SC and FC and an array of psychological tasks in 609 subjects from the Human Connectome Project (HCP). We identified several sets of connections that each uniquely map onto different aspects of cognitive function. We found a small number of distributed SC and a larger set of cortico-cortical and cortico-subcortical FC that express this association. Importantly, SC and FC each show unique and distinct patterns of variance across subjects and differential relationships to cognition. The results suggest that a complete understanding of connectome underpinnings of cognition calls for a combination of the two modalities.Significance StatementStructural connectivity (SC), the physical white-matter inter-regional pathways in the brain, and functional connectivity (FC), the temporal co-activations between activity of brain regions, have each been studied extensively. Little is known, however, about the distribution of variance in connections as they relate to cognition. Here, in a large sample of subjects (N = 609), we showed that two sets of brain-behavioural patterns capture the correlations between SC, and FC with a wide range of cognitive tasks, respectively. These brain-behavioural patterns reveal distinct sets of connections within the SC and the FC network and provide new evidence that SC and FC each provide unique information for cognition.


2018 ◽  
Author(s):  
Omid Kardan ◽  
Mary K. Askren ◽  
Misook Jung ◽  
Scott Peltier ◽  
Bratislav Misic ◽  
...  

AbstractSeveral studies in cancer research have suggested that cognitive dysfunction following chemotherapy, referred to in lay terms as “chemobrain”, is a serious problem. At present, the changes in integrative brain function that underlie such dysfunction remains poorly understood. Recent developments in neuroimaging suggest that patterns of functional connectivity can provide a broadly applicable neuromarker of cognitive performance and other psychometric measures. The current study used multivariate analysis methods to identify patterns of disruption in resting state functional connectivity of the brain due to chemotherapy and the degree to which the disruptions can be linked to behavioral measures of distress and cognitive performance. Sixty two women (22 healthy control, 18 patients treated with adjuvant chemotherapy, and 22 treated without chemotherapy) were evaluated with neurocognitive measures followed by self-report questionnaires and open eyes resting-state fMRI scanning at three time points: diagnosis (M0, pre-adjuvant treatment), at least 1 month (M1), and 7 months (M7) after treatment. The results indicated deficits in cognitive health of breast cancer patients immediately after chemotherapy that improved over time. This psychological trajectory was paralleled by a disruption and later recovery of resting-state functional connectivity, mostly in the parietal and frontal brain regions. The functional connectivity alteration pattern seems to be a separable treatment symptom from the decreased cognitive health. More targeted support for patients should be developed to ameliorate these multi-faceted side effects of chemotherapy treatment on neural functioning and cognitive health.


Sign in / Sign up

Export Citation Format

Share Document