scholarly journals Impacts of Industrial Effluent on River Kabul

2012 ◽  
Vol 8 ◽  
pp. 44-47
Author(s):  
Ghazal Nosheen ◽  
Muhammad Ullah ◽  
Kashif Ahmad Khan ◽  
Attiq Ur Rehman

The disposal of untreated industrial effluent into receiving water courses has become a major environmental challenge being faced by most of the developing countries. The high-strength and toxic wastes are responsible for a variety of water-borne diseases. In Pakistan numerous industrial units that dispose their effluent directly into receiving stream without any treatment. This study was, therefor designed to assess the wastewater characteristics of some major industrial units in the surrounding area of River Kabul, which is one of the most signifi cant resources of water in the north region of the country.The main objectives of this study were to evaluate the wastewater characteristics of some major industrial units in terms of BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), and TSS (Total Suspended Solids) etc. For this purpose, various representative samples were collected from the major industrial units like sugar, paper, ghee (Butter) and textile mills, and were analyzed using standard laboratory techniques. The results indicates that the BOD of sugar, paper, ghee (butter) and textile mills is in the range of 2235mg/L, 1150mg/L, 844mg/L and 745mg/L, respectively. Whereas, the COD of sugar, paper, ghee and textile mills was noticed to be 3945mg/L 2045mg/L, 2240mg/L and 1244mg/L respectively. Owing to the disposal of such highstrength wastes water without treatment, a remarkable increase in the TSS from 96 to 382mg/L, and decrease in DO (Dissolved Oxygen) concentration from 8.8 to 6.7mg/L of River Kabul was observed. The results of this study suggest that all the wastewater coming from the industrial sources should be properly treated as an integral part of their production before their fi nal disposal into River Kabul to secure its natural water quality.DOI: http://dx.doi.org/10.3126/hn.v8i0.4924Hydro Nepal: Journal of Water, Energy and Environment Issue No. 8, 2011 JanuaryPage: 44-47Uploaded date: 23 June, 2011

2018 ◽  
Vol 13 (1) ◽  
pp. 164-171
Author(s):  
Todd O. Williams ◽  
Dale Gabel ◽  
Dan Robillard

Abstract Fats, Oils, and Grease (FOG) wastes and high-strength wastes (HSW) are frequently received at municipal water resource recovery facilities (WRRFs) as trucked-in wastes. These wastes offer significant benefits in terms of revenue from tipping fees and feedstock for co-digestion in anaerobic digesters that produce biogas, which can be beneficially used as fuel. The number of treatment plants receiving and beneficially using trucked-in wastes currently in operation or under investigation is increasing rapidly across the North America as utilities strive to remove this material from normal wastewater to avoid sewer system clogging, maintenance and backups, avoid the oxygen demand of these wastes in secondary treatment systems, and to capture and beneficially reuse the energy that is contained within the material. Historically, trucked-in wastes have been discharged to the head end of treatment plants or to an upstream manhole in the incoming interceptor sewer to enable the material to be mixed with raw wastewater prior to treatment through the liquid stream of the WRRF. However, this approach results in loss of material and degradation of the energy value of the FOG wastes and HSW and also creates collection and maintenance issues in the preliminary and primary treatment systems. To prevent degradation of the material and retain maximum energy for the CHP system, receiving stations are being constructed for direct off-loading of the wastes to processing and storage facilities prior to their transfer to anaerobic digesters at a relatively uniform rate to minimize the potential for digester upsets while at the same time to increase biogas production. This paper presents the key components and considerations in the design and operation of modern FOG waste receiving and processing facilities.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 221-224 ◽  
Author(s):  
Jana Zagorc-Končan ◽  
J. Šömen

Microbial purification capacity is an important factor in natural self-regulation in water. Evaluating the fate of biodegradable organic pollution downstream from the discharge seems an appropriate way to follow the effect of pollution and its hazard assessment, which dictates the needed sanitation measures. We suggest a simple test for such monitoring. A modification of the additional oxygen demand test, standardised in Ausgewählte Methoden der Wasseruntersuchung, was applied in two river case studies. The additional oxygen demand is a measure of the capability and rate of biodegradation of known organic substance as well as of the amount and activity of heterotrophic organisms in the river. The original test using peptone and glucose as additional feedings of BOD samples was modified by the use of other organic biodegradable model substances characteristic for individual industrial pollutants. The test was found to be an excellent indicator of adapted microorganisms, which are essential for the biodegradation of the appointed organic substances downstream of their discharge into the receiving stream.


2021 ◽  
Vol 14 ◽  
pp. 117862212110281
Author(s):  
Ahmed S. Mahmoud ◽  
Nouran Y. Mohamed ◽  
Mohamed K. Mostafa ◽  
Mohamed S. Mahmoud

Tannery industrial effluent is one of the most difficult wastewater types since it contains a huge concentration of organic, oil, and chrome (Cr). This study successfully prepared and applied bimetallic Fe/Cu nanoparticles (Fe/Cu NPs) for chrome removal. In the beginning, the Fe/Cu NPs was equilibrated by pure aqueous chrome solution at different operating conditions (lab scale), then the nanomaterial was applied in semi full scale. The operating conditions indicated that Fe/Cu NPs was able to adsorb 68% and 33% of Cr for initial concentrations of 1 and 9 mg/L, respectively. The removal occurred at pH 3 using 0.6 g/L Fe/Cu dose, stirring rate 200 r/min, contact time 20 min, and constant temperature 20 ± 2ºC. Adsorption isotherm proved that the Khan model is the most appropriate model for Cr removal using Fe/Cu NPs with the minimum error sum of 0.199. According to khan, the maximum uptakes was 20.5 mg/g Cr. Kinetic results proved that Pseudo Second Order mechanism with the least possible error of 0.098 indicated that the adsorption mechanism is chemisorption. Response surface methodology (RSM) equation was developed with a significant p-value = 0 to label the relations between Cr removal and different experimental parameters. Artificial neural networks (ANNs) were performed with a structure of 5-4-1 and the achieved results indicated that the effect of the dose is the most dominated variable for Cr removal. Application of Fe/Cu NPs in real tannery wastewater showed its ability to degrade and disinfect organic and biological contaminants in addition to chrome adsorption. The reduction in chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN), Cr, hydrogen sulfide (H2S), and oil reached 61.5%, 49.5%, 44.8%, 100%, 38.9%, 96.3%, 88.7%, and 29.4%, respectively.


2021 ◽  
Vol 9 (3) ◽  
pp. 611
Author(s):  
Zhendong Yang ◽  
Zhenghua Liu ◽  
Aleksandra Sklodowska ◽  
Marcin Musialowski ◽  
Tomasz Bajda ◽  
...  

Management of excessive aqueous sulfide is one of the most significant challenges of treating effluent after biological sulfate reduction for metal recovery from hydrometallurgical leachate. The main objective of this study was to characterize and verify the effectiveness of a sulfide-oxidizing bacterial (SOB) consortium isolated from post-mining wastes for sulfide removal from industrial leachate through elemental sulfur production. The isolated SOB has a complete sulfur-oxidizing metabolic system encoded by sox genes and is dominated by the Arcobacter genus. XRD analysis confirmed the presence of elemental sulfur in the collected sediment during cultivation of the SOB in synthetic medium under controlled physicochemical conditions. The growth yield after three days of cultivation reached ~2.34 gprotein/molsulfid, while approximately 84% of sulfide was transformed into elemental sulfur after 5 days of incubation. Verification of isolated SOB on the industrial effluent confirmed that it can be used for effective sulfide concentration reduction (~100% reduced from the initial 75.3 mg/L), but for complete leachate treatment (acceptable for discharged limits), bioaugmentation with other bacteria is required to ensure adequate reduction of chemical oxygen demand (COD).


2015 ◽  
Vol 71 (4) ◽  
pp. 588-596 ◽  
Author(s):  
M. C. Collivignarelli ◽  
G. Bertanza ◽  
M. Sordi ◽  
R. Pedrazzani

This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y−1 (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002–2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved−1), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25–0.50), thus showing the complementarity of the two biological processes.


2012 ◽  
Vol 8 ◽  
pp. 34-37
Author(s):  
Arshad Ali ◽  
Hashim Nissar Hasim ◽  
Ashfaq Ahmad ◽  
Intikhab Ahmad Qureashi

Pakistan is subjected to rapid water shortage due to different social and environmental problems. Moreover, the drinking water is being contaminated at an alarming rate that is mostly due to the discharge of untreated domestic and industrial effluent and agricultural run-off. Therefore, this study was designed to evaluate the water quality problems of the subject area and to determine a cost effective treatment technique. The main objective was to determine the removal efficiency of microbial contamination using flocculant settling. The main pollutants identified by conducting water quality tests are arsenic, fluoride, nitrates and microbial contamination. The maximum concentration of arsenic, fluoride, nitrates and microbial contamination were observed as 12ppb, 2.2mg/L, 26mg/L and 84 colonies/100mL, respectively. During discrete settling tests performed in a 12cft column, it was noticed that the removal of microbial contamination corresponding to a detention time of 225min is 26.7% only. While working on different coagulants, it was observed that the optimum alum, lime and magnesium dosage for the removal of microbial contamination is 31.5mg/L, 10.5mg/L and 27mg/L respectively. The final results of the study suggest that the use of lime as a coagulant to improve the quality of water in terms of microbial contamination is an effective and reliable technique, both in terms of its treatability performance and cost-effectiveness, which was noticed to be 77.7%.DOI: http://dx.doi.org/10.3126/hn.v8i0.4909Hydro Nepal: Journal of Water, Energy and Environment Issue No. 8, 2011 JanuaryPage: 34-37Uploaded date: 17 June, 2011


2013 ◽  
Vol 67 (3) ◽  
pp. 514-520
Author(s):  
A. R. Navarro ◽  
Z. Lopez ◽  
J. Salguero ◽  
M. C. Maldonado

Lemon growing areas in the north of Argentina have industries that produce concentrated juice, peel and essential oil and generate a significant amount of liquid and solid waste as lemon pulp. In Argentina, despite the potential applications that the pulp has as animal feed and human and industrial raw material, only 10% is used for these purposes and the rest is discarded into the environment causing many ecological and economic problems. There is little information in the literature on biotechnologies for the treatment of this industrial waste. This paper shows that lemon pulp is a suitable substrate to be treated by anaerobic digestion. We obtained 86 and 92% reduction of chemical oxygen demand in a digester with a semi-continuous feed and retention time of 10 and 20 days respectively and a productivity of 0.406 g CH4/g VS h. Comparative tests showed that pre-digesting the pulp improved the process of digestion and increased biogas generation by 20%.


Author(s):  
Azad Kannaujiya

Gomati River originate from Madhoganj Tanda village in Pilibhit district, U.P. it passes through the district of Shahjahanpur, kheri, Hardoi, Sitapur, Janpur and ultimately merge in Ganga. River water is significant for every living organism as well as aquatic life. Water pollution is a major global problem. Modernization and urbanization have polluted the river water and degraded the status. All over the world we are seeing that drain is the main source of water pollution especially for rivers flowing within the city. This drain generally carries industrial effluent, domestic waste, sewage and medicinal waste resulting in poor water quality. Gomati River receives industrial as well as domestic waste from various drains of Lucknow city. As Gomati river is the only source of surface water near the communities. A total 20 parameters namely Temperature, pH, Turbidity, Conductivity, Total dissolved solids (TDS), Total suspended solids (TSS), Total solids (TS), Dissolved oxygen (DO), Biological oxygen demand (BOD) Chemical oxygen demand (COD), Alkalinity, Total hardness, Calcium as ca, Magnesium as Mg, Chloride, Fluoride, Sulphate as So4, Nickel as Ni, Lead as Pb, and Zinc as Zn where analysed and their variation is discussed to obtain the impact of effluents on water quality. From the result it was found higher than the permissible limit of WHO and BIS.


2020 ◽  
Vol 992 ◽  
pp. 523-528
Author(s):  
Alexey V. Ishkov ◽  
E.A. Ivanayskiy ◽  
Valeriy I. Ivanov

Micro-alloyed steels are widely used in the manufacture of critical welded structures operating under extreme conditions of the North. Microalloying of V, Nb and B is a simple and effective method of transferring known grades of structural steel and alloys to the category of increased and high strength, cold resistance, etc. The possibility of arc welding of steels grade 10CrSiNiAl and 15CrSiNiAl (10, 15ХСНДА in Russian), initially alloyed with trace amounts of niobium and vanadium to increase their cold resistance in carbon monoxide is considered. It is established that the use of the specified reducing atmosphere prevents the oxidation of the weld metal. The thermodynamic substantiation of the chemical reactions of microalloying elements proceeding in the weld pool, leading to the preservation of the steel composition, is presented. The chemical and metallographic analysis of welds was performed. The efficiency of using low-cost CO, or its mixtures with CO2, as substitutes for expensive argon and helium, when welding micro alloyed steels is shown.


2019 ◽  
Vol 817 ◽  
pp. 528-535 ◽  
Author(s):  
Tommaso D'Antino ◽  
Francesca Giulia Carozzi ◽  
Carlo Poggi

The use of inorganic matrix composites to strengthen and retrofit existing masonry and concrete structures has been gaining increasing interest in the last years. Among them, composite reinforced mortar (CRM) systems are a promising solution to increase the shear and flexural capacity of masonry panels. CRMs are comprised of a relatively thin inorganic matrix layer reinforced with a bi-dimensional grid made with high-strength fibers impregnated with an organic matrix. They are compatible with the substrate due to the use of inorganic matrix, have good durability and high-strength-to weight ratio due to the use of reinforcing composite materials. CRM systems are still in their infancy and limited research is available in the literature. In this paper, masonry walls constructed with historical bricks typical of the north of Italy were strengthened with a CRM system including a glass composite grid and a lime-based mortar and were subjected to diagonal compression. Three walls were strengthened with the CRM and one was used as a control specimen. The results obtained showed that the CRM system significantly increased the shear strength of the masonry panels subjected to diagonal compression.


Sign in / Sign up

Export Citation Format

Share Document