Anaerobic treatment of residual lemon pulp in digesters with semi-continuous feed

2013 ◽  
Vol 67 (3) ◽  
pp. 514-520
Author(s):  
A. R. Navarro ◽  
Z. Lopez ◽  
J. Salguero ◽  
M. C. Maldonado

Lemon growing areas in the north of Argentina have industries that produce concentrated juice, peel and essential oil and generate a significant amount of liquid and solid waste as lemon pulp. In Argentina, despite the potential applications that the pulp has as animal feed and human and industrial raw material, only 10% is used for these purposes and the rest is discarded into the environment causing many ecological and economic problems. There is little information in the literature on biotechnologies for the treatment of this industrial waste. This paper shows that lemon pulp is a suitable substrate to be treated by anaerobic digestion. We obtained 86 and 92% reduction of chemical oxygen demand in a digester with a semi-continuous feed and retention time of 10 and 20 days respectively and a productivity of 0.406 g CH4/g VS h. Comparative tests showed that pre-digesting the pulp improved the process of digestion and increased biogas generation by 20%.

2020 ◽  
Vol 64 (12) ◽  
pp. 34-39
Author(s):  
Oksana V. Shlyamina ◽  
◽  
Albina A. Samatova ◽  
Yulia G. Ataeva ◽  
Zilya D. Murtazina ◽  
...  

Waste from agricultural and industrial production is one of the factors of environmental pollution. Together with this, they are a valuable raw material and can be used, for example, for the manufacture of additional animal feed. The article provides information on the rational use of valuable agricultural and industrial waste as additives in the rations of feeding farm animals and poultry. The health of farm animals and poultry, their productivity depends on the quality and balance of feed. An unbalanced diet leads to metabolic disorders. The data on the chemical composition of molasses, cake and meal, which are used in animal husbandry and poultry farming, as an additional feed with a high protein content, are given. Molasses, which is a by-product of sugar beet production, contains easily digestible carbohydrates, and its use in animal husbandry as an additional feed solves the problem of sugar deficiency. The Testing Center (IC) of the Federal State Budgetary Scientific Institution "FSBSI «FCTRBS-RRVI" conducted research on sunflower cake, rapeseed and sunflower meal in terms of feed value (mass fraction of moisture, mass fraction of crude protein, mass fraction of crude fiber, mass fraction of crude fat). The results of the study of beet molasses samples are presented in terms of quality indicators: mass fraction of dry substances, mass fraction of sugar (by direct polarization), and mass fraction of reducing sugars. The studies carried out indicate that 95% of cake, meal and beet molasses obtained from agricultural and industrial waste, in terms of feed value, meet the requirements of the current regulatory documentation.


2009 ◽  
Vol 59 (9) ◽  
pp. 1841-1846 ◽  
Author(s):  
R. C. Leitão ◽  
A. M. Araújo ◽  
M. A. Freitas-Neto ◽  
M. F. Rosa ◽  
S. T. Santaella

The market for coconut water causes environmental problems as it is one of the major agro-industrial solid wastes in some developing countries. With the aim of reusing the coconut husk, Embrapa developed a system for processing this raw material. During the dewatering stage Coconut Husk Liquor (CHL) is generated with chemical oxygen demand (COD) varying from 60 to 70 g/L due to high concentrations of sugars and tannins. The present study evaluated the feasibility of anaerobic treatment of CHL through Anaerobic Toxicity Assay and the operation of a lab-scale Upflow Anaerobic Sludge Blanket (UASB) reactor. Results showed that CHL can be treated through a UASB reactor operating with an OLR that reaches up to 10 kg/m3·d and that is maintained stable during the whole operation. With this operational condition, the removal efficiency was higher than 80% for COD and approximately 78% for total tannins, and biogas production was 20 m3 of biogas or 130 KWh per m3 of CHL. Seventy-five percent of the biogas composition was methane and toxicity tests demonstrated that CHL was not toxic to the methanogenic consortia. Conversely, increasing the concentration of CHL leads to increased methanogenic activity.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (6) ◽  
pp. 9-15 ◽  
Author(s):  
TOMI HIETANEN ◽  
JUHA TAMPER ◽  
KAJ BACKFOLK

The use of a new, technical, high-purity magnesium hydroxide-based peroxide bleaching additive was evaluated in full mill-scale trial runs on two target brightness levels. Trial runs were conducted at a Finnish paper mill using Norwegian spruce (Picea abies) as the raw material in a conventional pressurized groundwood process, which includes a high-consistency peroxide bleaching stage. On high brightness grades, the use of sodium-based additives cause high environmental load from the peroxide bleaching stage. One proposed solution to this is to replace all or part of the sodium hydroxide with a weaker alkali, such as magnesium hydroxide. The replacement of traditional bleaching additives was carried out stepwise, ranging from 0% to 100%. Sodium silicate was dosed in proportion to sodium hydroxide, but with a minimum dose of 0.5% by weight on dry pulp. The environmental effluent load from bleaching of both low and high brightness pulps was significantly reduced. We observed a 35% to 48% reduction in total organic carbon (TOC), 37% to 40% reduction in chemical oxygen demand (COD), and 34% to 60% reduction in biological oxygen demand (BOD7) in the bleaching effluent. At the same time, the target brightness was attained with all replacement ratios. No interference from transition metal ions in the process was observed. The paper quality and paper machine runnability remained good during the trial. These benefits, in addition to the possibility of increasing production capacity, encourage the implementation of the magnesium hydroxide-based bleaching concept.


Holzforschung ◽  
2020 ◽  
Vol 74 (11) ◽  
pp. 1071-1078
Author(s):  
Jie Chu ◽  
Anuj Kumar

AbstractThe implementation of circular economy in wood industries is an effective way for future sustainable development. The wood industries in China are not in the direction of circular economy approach due to less availability of assessment/calculation data of pollutants as per life cycle assessment (LCA) criteria. The present study focuses on the calculation of emission and pollutants from wood industries as per LCA; the emission and pollution data were collected from fiberboard Medium-density fiberboard (MDF), plywood and particleboard (PB) production. The comparative analysis of dust emissions, industrial waste gases and chemical oxygen demand (COD) were performed among three wood industries. The results revealed that the fiberboard industry was the highest emitter of dust, industrial waste gas and COD; and particleboard industry was the least emitter. Further, results indicated that pollutant index of wood industries were significantly changed between 2015 and 2017; the industrial waste water discharge increased five folds and the COD, dust and industrial gases increased two times. This study provides with the emission and pollutants data of wood industries as per LCA to promote the sustainable development for circular and low carbon economics.


2021 ◽  
Vol 713 (1) ◽  
pp. 012001
Author(s):  
D Wahyuni ◽  
M T Sembiring ◽  
I Budiman ◽  
T Utari ◽  
C D N Silaen

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Negisa Darajeh ◽  
Azni Idris ◽  
Paul Truong ◽  
Astimar Abdul Aziz ◽  
Rosenani Abu Bakar ◽  
...  

Palm oil mill effluent (POME), a pollutant produced by the palm oil industry, was treated by the Vetiver system technology (VST). This technology was applied for the first time to treat POME in order to decrease biochemical oxygen demand (BOD) and chemical oxygen demand (COD). In this study, two different concentrations of POME (low and high) were treated with Vetiver plants for 2 weeks. The results showed that Vetiver was able to reduce the BOD up to 90% in low concentration POME and 60% in high concentration POME, while control sets (without plant) only was able to reduce 15% of BOD. The COD reduction was 94% in low concentration POME and 39% in high concentration POME, while control just shows reduction of 12%. Morphologically, maximum root and shoot lengths were 70 cm, the number of tillers and leaves was 344 and 86, and biomass production was 4.1 kg m−2. These results showed that VST was effective in reducing BOD and COD in POME. The treatment in low concentration was superior to the high concentration. Furthermore, biomass of plant can be considered as a promising raw material for biofuel production while high amount of biomass was generated in low concentration of POME.


2000 ◽  
Vol 15 (1) ◽  
pp. 2-8 ◽  
Author(s):  
N.C. Wagner ◽  
S. Ramaswamy ◽  
U. Tschirner

AbstractA pre-economic feasibility study was undertaken to determine the potential of cereal straw for industrial utilization in Minnesota. Specifically, utilizing straw for pulp and paper manufacture was of interest. The availability of cereal straw fiber supplies at various locations across the state of Minnesota, along with pre-processing issues such as transportation, harvesting, handling, and storage, are discussed and priced. The greatest economic advantage of straw for industrial use appears to be the low cost of the raw material compared to traditional raw materials. This also provides an excellent opportunity for additional income for farmers. The methodology and information provided here should be helpful in evaluating the feasibility of utilizing straw for other industrial purposes in other parts of the world. However, in some Third World countries, long-standing on-farm, traditional uses of cereal straws for fuel, fiber, and animal feed may limit their availability for industrial utilization.


1985 ◽  
Vol 17 (1) ◽  
pp. 61-75 ◽  
Author(s):  
L H A Habets ◽  
J H Knelissen

Within the holding of Bührmann-Tetterode NV, 7 Dutch paper and board mills are operating, all of them using mainly waste paper as raw material. While three of them completely closed their watercircuits, two other mills put into practice biological waste water treatment namely anaerobic and anaerobic/aerobic. Number 6 is realising an anaerobic plant this year and for number 7 research is still being carried out, dealing with several unfavourable aspects. In September 1981 research for anaerobic treatment (UASB reactors) was started. After good results had been achieved on laboratory scale (301), further investigations were started on semitechnical scale (50 m3). In both cases the anaerobic seed sludge granulated after a while and loadings up to 20 kg COD/m3.d could be handled. COD-removal was 70 per cent, even when the hydraulic retention time was only 2.5 hours. In April 1983 a 70 m3 practical scale UASB reactor was started up at the solid board mill of Ceres. In October 1983 a full scale plant was started up at Papierfabriek Roermond. This plant consists of a 1,000 m3 UASB reactor and a 70 m3 gasholder. It has been designed and constructed by Paques BV and is used for pretreatment of effluent, in order to reduce the loading of the activated sludge plant. Besides energy savings on the oxygen input, about 1 million m3/year of biogas is being generated and is used for steamproduction. Both plants are working satisfactorily. Investment costs appeared to be relatively low. At Ceres, pay-out time is 1.5 year, while at Papierfabriek Roermond waste water treatment is cheaper than before, although capacity is doubled.


Sign in / Sign up

Export Citation Format

Share Document