scholarly journals Correlation between physical and mechanical properties of mudrock

2000 ◽  
Vol 22 ◽  
Author(s):  
G. R. Lashkaripour

The paper describes the statistical relationship between physical and mechanical properties of mudrock. It focuses particularly on the correlation between index parameters that are relatively easy to measure and mechanical properties that are difficult to determine. Data for regression analysis were extracted from available published information. Moreover, many tests were carried out on different types of mudrock from various sites. Reasonably good correlation is found between some index parameters and mechanical properties, and various regression equations are proposed for predicting mechanical properties for available data. There is a good correlation between the point load, water content, porosity, and modulus of elasticity with the uniaxial compressive strength, whereas the correlation between the density, elastic wave velocity, and Poisson's ratio with the compressive strength is poor. Theses correlations may aid engineers to make preliminary estimation of the mechanical properties of mudrock when samples of adequate size for testing are generally not available. Furthermore, the selective use of proposed relationships may even reduce the testing requirements of specific projects.

2021 ◽  
Vol 62 (4) ◽  
pp. 340-348
Author(s):  
Leonid Dvorkin ◽  
Lyudmila Nihaeva

The paper presents the results of experimental studies of the possibility of obtaining modified supersulfate cements (SSC) with improved physical and mechanical properties on lowalumina blast-furnace granular slags. It has been shown in comparative experimental tests of the effect of admixtures of various sulfate activators that the highest strength of cements is achieved when using a phosphogypsum neutralized with lime. An additional activating effect has been established for supersulfated cements with the introduction of admixtures fluorides and, in particular, fluorides of magnesium, calcium and sodium silicofluoride. The additional introduction of hardening accelerators and their compositions with a superplasticizer into the SSC composition makes it possible to increase the compressive strength of cements at 28 days of age up to 60-65 MPa while achieving high strength at an early age. Along with standard tests, experiments were performed using mathematical planning with obtaining adequate regression equations.


Author(s):  
Seyed Morteza Davarpanah ◽  
Mohammad Sharghi ◽  
Abolfazl Tarifard ◽  
Ákos Török ◽  
Balázs Vásárhelyi

AbstractThe mechanical properties of frozen rocks vary significantly from the properties of the same lithology under ambient temperature. The goal of this paper is to investigate these changes in the physical and mechanical properties of rocks due to saturation and freezing. Besides, the attention was paid on discovering new correlations between the mechanical characteristics. To fulfill these objectives, 36 uniaxial compressive strength tests, 36 Brazilian splitting tests, and 48 point load tests were carried out. The samples were tested in air dry, water saturated, and frozen (− 20 °C) conditions. The measured physical and mechanical parameters were analyzed by using regression analyses. It was found that the average uniaxial compressive strength of frozen samples (21.93 MPa) is 86.4% more than saturated ones (11.76 MPa) but 25.9% less than dry specimens (29.62 MPa). Additionally, high correlations were established between uniaxial compressive strength and IS(50) under air-dry, saturated, and frozen conditions for the investigated marl samples. Furthermore, it is of particular interest to observe a high correlation with the determination coefficient (R2 = 0.95) between the constants of previously published linear regressions of UCS- Is(50) under dry status.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


2021 ◽  
Vol 13 (4) ◽  
pp. 2407
Author(s):  
Guang-Zhu Zhang ◽  
Xiao-Yong Wang ◽  
Tae-Wan Kim ◽  
Jong-Yeon Lim ◽  
Yi Han

This study shows the effect of different types of internal curing liquid on the properties of alkali-activated slag (AAS) mortar. NaOH solution and deionized water were used as the liquid internal curing agents and zeolite sand was the internal curing agent that replaced the standard sand at 15% and 30%, respectively. Experiments on the mechanical properties, hydration kinetics, autogenous shrinkage (AS), internal temperature, internal relative humidity, surface electrical resistivity, ultrasonic pulse velocity (UPV), and setting time were performed. The conclusions are as follows: (1) the setting times of AAS mortars with internal curing by water were longer than those of internal curing by NaOH solution. (2) NaOH solution more effectively reduces the AS of AAS mortars than water when used as an internal curing liquid. (3) The cumulative heat of the AAS mortar when using water for internal curing is substantially reduced compared to the control group. (4) For the AAS mortars with NaOH solution as an internal curing liquid, compared with the control specimen, the compressive strength results are increased. However, a decrease in compressive strength values occurs when water is used as an internal curing liquid in the AAS mortar. (5) The UPV decreases as the content of zeolite sand that replaces the standard sand increases. (6) When internal curing is carried out with water as the internal curing liquid, the surface resistivity values of the AAS mortar are higher than when the alkali solution is used as the internal curing liquid. To sum up, both NaOH and deionized water are effective as internal curing liquids, but the NaOH solution shows a better performance in terms of reducing shrinkage and improving mechanical properties than deionized water.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 523-540
Author(s):  
Imed Beghoura ◽  
Joao Castro-Gomes

This study focuses on the development of an alkali-activated lightweight foamed material (AA-LFM) with enhanced density. Several mixes of tungsten waste mud (TWM), grounded waste glass (WG), and metakaolin (MK) were produced. Al powder as a foaming agent was added, varying from 0.009 w.% to 0.05 w.% of precursor weight. Expanded granulated cork (EGC) particles were incorporated (10% to 40% of the total volume of precursors). The physical and mechanical properties of the foamed materials obtained, the effects of the amount of the foaming agent and the percentage of cork particles added varying from 10 vol.% to 40% are presented and discussed. Highly porous structures were obtained, Pore size and cork particles distribution are critical parameters in determining the density and strength of the foams. The compressive strength results with different densities of AA-LFM obtained by modifying the foaming agent and cork particles are also presented and discussed. Mechanical properties of the cured structure are adequate for lightweight prefabricated building elements and components.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2021 ◽  
pp. 34-38
Author(s):  
R. L. Shatalov ◽  
V. A. Medvedev

When controlling the mechanical properties and structure of vessels made of carbon structural steels manufactured by hot deformation on rolling and pressing lines (PPL) of machine-building enterprises of Russia, such cooling media as water, I20 industrial mineral oil, air are used. The applied cooling media are able to provide the workpieces with a given structure with a wide range of mechanical properties. However, the cooling media have a number of technological limitations and conditions of the use, non-compliance with which leads to reject. When cooled in oil, the probability of ignition is high; when cooled in water, hardening cracks may form, and air is not always able to provide the required rate and uniformity of heat transfer to the environment. The efficiency of control of physical and mechanical properties and structure of deformed vessels made of 50 steel by cooling in TERMAT polymer aqueous solutions in different concentrations on PPL of the plant of JSC NPO Pribor was studied. The effect of varying the concentration from 2 to 9% of TERMAT polymer on the formation of metal structure, as well as physical and mechanical properties of hot-deformed vessels was studied. The results of testing the strength and plastic characteristics of vessels by destructive and non-destructive control methods are presented. According to the results of physical and mechanical properties, regression equations were obtained with at least 95% reliability of R2, which establish the relationship between the controlled plastic and strength parameters of the vessel metal`s properties. The conducted researches allowed to compare the indicators of the main physical and mechanical properties of steel vessels at the PPL outlet and to propose methods of inhomogeneity control that reduce time and material costs by 5–10% during the tests.


Filomat ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 609-614
Author(s):  
Burcu Aydin ◽  
Fusun Yalcin ◽  
Ozge Ozer ◽  
Gurhan Yalcin

Marbles are secondary decomposition products formed by metamorphism of limestone. Effective classification of marble quarries in terms of quality enables the selection of a sustainable production method and safety application. This evaluation is based on physico-mechanical properties of the samples. Obtained results of physico-mechanical properties of the marbles were statistically analyzed using Stata 14 and SPSS 21 software. The marbles indicated mostly normal physical and mechanical properties. A strong inverse relationship exists between Abrasion Value and Knoop Hardness Determination that indicates a significant nonlinear relationship. Samples were distinguished into 3 groups of close similarity and related properties. The estimated value of the parameters is in the 95 % confidence interval. The equation obtained by regression analysis was used for the determination of resistance to abrasion.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Neslihan Doğan-Sağlamtimur ◽  
Adnan Güven ◽  
Ahmet Bilgil

Pumice, cements (CEM I- and CEM II-type), waste fly and bottom ashes (IFA, GBA, and BBA) supplied from international companies were used to produce lightweight building materials, and physical-mechanical properties of these materials were determined. Axial compressive strength (ACS) values were found above the standards of 4 and 8 MPa (Bims Concrete (BC) 40 and 80 kgf/cm2 class) for cemented (CEM I) pumice-based samples. On the contrary, the ACS values of the pumice-based cemented (CEM II) samples could not be reached to these standards. Best ACS results (compatible with BC80) from these cemented lightweight material samples produced with the ashes were found in 50% mixing ratio as 10.6, 13.2, and 20.5 MPa for BBA + CEM I, GBA + CEM II, and IFA + CEM I, respectively, and produced with pumice were found as 8.4 MPa (same value) for GBA + pumice + CEM II (in 25% mixing ratio), BBA + pumice + CEM I (in 100% mixing ratio), and pumice + IFA + CEM I (in 100% mixing ratio), respectively. According to the results, cemented ash-based lightweight building material produced with and without pumice could widely be used for constructive purposes. As a result of this study, an important input to the ecosystem has been provided using waste ashes, whose storage constitutes a problem.


Sign in / Sign up

Export Citation Format

Share Document