scholarly journals Adsorptive Separation of Metal Ions with Surface Modified Desmostachya bipinnata

2013 ◽  
Vol 13 (1) ◽  
pp. 101-106 ◽  
Author(s):  
Jagjit Kour ◽  
Puspa Lal Homagai ◽  
Megh Raj Pokhrel ◽  
Kedar Nath Ghimire

The biomass of Desmostachy bipannata (Kush, a religious plant of Hindus) was modified for the better adsorption of metal ions from aqueous solution. The FTIR and SEM images were used for the characterization of biomass. The adsorptive separation of metal ions from aqueous solution was studied with equilibrium isotherm and kinetic model. Langmuir adsorption isotherm and pseudo second order kinetic model showed better explanation for the adsorption process. The experimental results suggest that biomass from Kush can be used as an effective biosorbent for the removal of metal ions from aqueous solution. Nepal Journal of Science and Technology Vol. 13, No. 1 (2012) 101-106 DOI: http://dx.doi.org/10.3126/njst.v13i1.7448

2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ > Cd2+ > Zn2+ > Cu2+ > Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


2013 ◽  
Vol 9 (1) ◽  
pp. 1822-1836
Author(s):  
Keon Sang Ryoo ◽  
Jong-Ha Choi ◽  
Yong Pyo Hong

The present study is to explore the possibility of utilizing granular activated charcoal (GAC) for the removal of total phosphorous (T-P) and total nitrogen (T-N) in aqueous solution. Batch adsorption studies were carried out to determine the influences of various factors like initial concentration, contact time and temperature. The adsorption data showed that GAC has a similar adsorption capacity for both T-N and T-P. The adsorption degree of T-N and T-P on GAC was highly concentration dependent. It was found that the adsorption capacity of GAC is quite favorable at a low concentration. At concentrations of 1.0 mg L-1 of T-P and 2.0 mg L-1 of T-N, approximately 97 % of adsorption was achieved by GAC. The equilibrium data were fitted well to the Langmuir isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher R2 compared with the pseudo-first-order and intra-particle kinetic model. The theoretical adsorption equilibrium qe,cal from pseudo-second-order kinetic model were relatively similar to the experimental adsorption equilibrium qe,exp. To evaluate the effect of thermodynamic parameters at different temperatures, the change in free energy ΔG, the enthalpy ΔH and the entropy ΔS were estimated. Except for adsorption of T-P at 278 K, the ΔG values obtained were all negative at the investigated temperatures. It indicates that the present adsorption system occurs spontaneously. The adsorption process of T-N by GAC was exothermic in nature, whereas T-P showed endothermic behavior. In addition, the positive values of ΔS imply that there was the increase in the randomness of adsorption of T-N and T-P at GAC-solution interface.  


2021 ◽  
Vol 16 (2) ◽  
pp. 436-443
Author(s):  
Sharmila Ramasamy ◽  
Anbarasu Kaliyaperumal ◽  
Thamilarasu Pommanaickar

Textile industries discharge wastewater containing various dyes including Crystal Violet dye. These dyes are very harmful for human beings, animals and plants. Therefore, the attempt is made for adsorption framework on elimination of crystal violet dye by using Cicca acida L. stem-activated carbon from aqueous solution carried out under various experimental methods and optimization conditions. Adsorption data modeled with Freundlich, Langmuir and Tempkin adsorption isotherms. Thermodynamic factors like as ∆Ho, ∆So and ∆Go were calculated, which indicated that the adsorption was spontaneous and endothermic nature. Based on kinetic study, pseudo-second order kinetic model was fit compared to the pseudo-first order kinetic model. The adsorbent has been characterized by SEM before and after adsorption of crystal violet dye solution.


Author(s):  
Ernesto Jr. S. Cajucom ◽  
◽  
Lolibeth V. Figueroa ◽  

This study was carried out to investigate the efficiency of raw pili shell (RPS) and the surface modified pili shell using EDTA (EMPS) and oxalic acid (OMPS). A comparative study on the adsorption capacity of the adsorbents was performed against lead (Pb2+) from aqueous solution. The adsorbents were characterized by FTIR, which showed higher peak of adsorption bands of carboxylic groups on the acid modified pili shells. Scanning electron microscope orSEM was also used to describe the surface morphology of the adsorbents. The linear form of Langmuir and Freundlich models were applied to represent adsorption data. The calculated equilibrium data of Pb (II) best fitted to Langmuir compare to Freundlich isotherm model with maximum adsorption capacity (qmax) of 27.03 mg/g and 45.45 mg/g using EMPS and OMPS, respectively. Kinetic sorption models were used to determine the adsorption mechanism and the kinetic data of all the adsorbents correlated (R2=1) wellwith the pseudo second order kinetic model. Among the three adsorbents, OMPS shown higher percent removal of lead compared to RPS and EMPS. The large adsorption capacity rate indicated that chemically modified pili shell in present study has great potential to be used as a cost-effective adsorbent for the removal of lead ions from the water.


2021 ◽  
Author(s):  
Duy Hoai-Phuong Nguyen ◽  
Quang Thanh Le ◽  
Tung Cao Thanh Pham ◽  
Thanh Tu Le

Abstract Heavy metal and radioactive ions can cause serious environmental problems if they are not completely removed from wastewater as well as in groundwater. In this study, large pore LTL and MOR zeolites were successfully synthesized and used as adsorbent to remove Pb2+, Cu2+, Zn2+, Cd2+, Cs+ and Sr2+ ions in aqueous solution. At low initial concentration (10 ppm), LTL and MOR zeolites effectively removed above metal ions with removal efficiency in the range of 95–99%. Both zeolites showed high affinity to Cs+ and Pb2+ ions with the adsorption capacity of LTL zeolite to Cs+ and Pb2+ were 278.8 mg/g and 141.4 mg/g, and that of MOR zeolite were 238.8 mg/g and 178.9 mg/g, respectively. The EDS results showed that Pb2+ ions from the aqueous solution were exchanged with exchangeable Na+ ions in MOR zeolite and K+ ions in LTL zeolite. The pseudo-second-order kinetic model and Langmuir isotherm model fitted better to experiment data on the adsorption of metal ions on both LTL and MOR zeolite. This result revealed that the adsorption of these metal ions on LTL and MOR zeolite was monolayer chemisorption. The equilibrium adsorption results showed that the microstructure of zeolite significantly affected the adsorption capacity of LTL and MOR zeolite on removal of tested metal ions.


2012 ◽  
Vol 77 (3) ◽  
pp. 393-405 ◽  
Author(s):  
Zavvar Mousavi ◽  
Abdorrahman Hosseinifar ◽  
Vahdat Jahed

Polyacrylamide (PAA), as an adsorbent was investigated for the removal of Ni(II) and Cr(III) metal ions from their synthesized aqueous solutions. The different variables affecting the adsorption capacity of the adsorbent such as contact time, pH of the sorption medium, metal ions concentration and temperature of the solution were investigated on a batch sorption basis. The adsorption equilibrium data fitted best with the Langmuir isotherm model. The maximum adsorption capacities found to be 84.03 and 32.67 mg g-1 of the polyacrylamide for Cr(III) and Ni(II), respectively. Three kinetic models including the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were selected to follow the adsorption process. Kinetic parameters such as rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was indicated that the adsorption of both ions onto polyacrylamide could be described by the pseudo-second-order kinetic model. Different thermodynamic parameters such as ?H?, ?S? and ?G? have also been evaluated and it has been found that the sorption was feasible, spontaneous and exothermic.


Author(s):  
Jiao Zhang ◽  
Pan Wang ◽  
Zhiqiang Zhang ◽  
Pengyu Xiang ◽  
Siqing Xia

The divalent mercury ion (Hg(II)) is one of the most hazardous toxic heavy-metal ions, and an important industrial material as well. It is essential to remove and recover Hg(II) from wastewater before it is released into the environment. In this study, the biosorption characteristics of Hg(II) from aqueous solution by the biopolymer from waste activated sludge (WAS) are investigated. The major components of the biopolymer consisted of proteins, carbohydrates, and nucleic acids. The adsorption kinetics fit for the pseudo-second-order kinetic model, and the adsorption isotherms were well described by Langmuir equation. The adsorption capacity of the biopolymer increased along with rising temperature, and the maximal adsorption capacity was up to 477.0 mg Hg(II)/g biopolymer at 308 K. The infrared spectroscopy analyses showed that the complexation of Hg(II) by the biopolymer was achieved by the functional groups in the biopolymer, including hydroxyl (–OH), amino (–NH2), and carboxylic (–COOH). From the surface morphology, the special reticulate structure enabled the biopolymer to easily capture the metal ions. From the elemental components analyses, a part of Hg(II) ions was removed due to ion exchange with the Na+, K+, and Ca2+, in the biopolymer. Both complexation and ion exchange played key roles in the adsorption of Hg(II) by the biopolymer. These results are of major significance for removal and recovery of Hg(II) from wastewater.


2015 ◽  
Vol 72 (7) ◽  
pp. 1243-1249 ◽  
Author(s):  
Yan Liu ◽  
Kaige Liu ◽  
Lin Zhang ◽  
Zhaowen Zhang

Surface-modified magnetic nano alloy particles Ni2.33Fe were prepared using a hydrothermal method and they were utilized for removing Rhodamine B (RhB) from aqueous solution. The magnetic nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy, which confirmed that the surface of the magnetic product with a face-centered cubic-type structure was successfully modified by sodium citrate. Kinetics studies were conducted. The pseudo-second-order kinetic model was used for fitting the kinetic data successfully. The Freundlich and Langmuir adsorption models were employed for the mathematical description of adsorption equilibrium. It was found that the adsorption isotherm can be very satisfactorily fitted by the Freundlich model.


2012 ◽  
Vol 549 ◽  
pp. 207-211 ◽  
Author(s):  
Qun Li An

The adsorption of methylene blue (MB) from an aqueous solution by MCM-41 was investigated. It was found that the adsorption of MB on MCM-41 could be described by Freundlich isotherm and second-order kinetic model. The adsorbed amount of MB on MCM-41 reached to 24.5 mg g-1 within 30 min.


2017 ◽  
Vol 19 (4) ◽  
pp. 65-74 ◽  
Author(s):  
Wojciech Konicki ◽  
Daniel Siber ◽  
Urszula Narkiewicz

Abstract Magnetic ZnFe2O4 nanocomposite (ZnFe-NC) was used as an adsorbent for the removal of Rhodamine B (RB) from aqueous solution. The synthesized nanocomposite was characterized by XRD, SEM, HRTEM, BET and FTIR. The effects of various parameters such as initial RB concentration (5–25 mg L−1), pH (3.4–11.1) and temperature (20–60°C) were investigated. The adsorption capacity at equilibrium increased from 5.02 to 9.83 mg g−1, with the increase in the initial concentration of RB from 5 to 25 mg L−1 at pH 7.0 and at 20°C. The experimental results indicated that the maximum RB removal could be attained at a solution pH of 4.4 and the adsorption capacity obtained was 6.02 mg g−1. Kinetic adsorption data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order model and the intraparticle diffusion model. The adsorption kinetics well fitted using a pseudo-second-order kinetic model. The experimental isotherm data were analyzed using two isotherm models, namely, Langmuir and Freundlich. The results revealed that the adsorption behavior of the RB onto ZnFe-NC fitted well with the Langmuir isotherm model. In addition, various thermodynamic parameters, such as standard Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) have been calculated.


Sign in / Sign up

Export Citation Format

Share Document