scholarly journals A Comparative Study of Sense of Presence of Virtual Reality and Immersive Environments

Author(s):  
Max M. North ◽  
Sarah M. North

The study of sense of presence experienced in virtual reality environments has become an important area of research. The continued advancement of immersive technology offers more opportunities to examine how a subject becomes immersed in and interacts with a variety of virtual environments. The primary purpose of this research is to study the sense of presence while interacting with a traditional Virtual Reality Environment (Helmet-based system with a Head-tracking device) and compare it with a virtual reality environment using an Immersive Environment (Spherical-based Visualization environment). Two empirical experiments were investigated in this study, each consisting of thirty-five subjects. A virtual airplane scenario was created and simulated for the participants of both environments. Participants were given several questionnaires after completing the simulation. This study mainly focused on question 9 and 10 of that survey, which dealt with how much the participant felt present in the virtual environment, and if the presence of the real world could still be experienced while in the virtual environment. We found that the subjects felt more involved with the virtual environment while using the Immersive Environment simulation versus using the traditional helmet-based Virtual Reality Environment. There was a statistically significant difference in questions 9 and 10 between the Immersive Environment and traditional Virtual Reality Environment when those questions are considered in isolation. However there was not a significant difference in the total sense of presence between the two environments after analyzing the questions together. The primary differences between the questions were analyzed using the overall mean and the standard deviation. The Immersive Environment has a smaller deviation than the traditional Virtual Reality Environment, implying that the sense of presence response is more concentrated. However, the overall results demonstrate that both environments are almost equally effective, with the Immersive Environment having several slight advantages.

1996 ◽  
Vol 5 (3) ◽  
pp. 274-289 ◽  
Author(s):  
Claudia Hendrix ◽  
Woodrow Barfield

This paper reports the results of three studies, each of which investigated the sense of presence within virtual environments as a function of visual display parameters. These factors included the presence or absence of head tracking, the presence or absence of stereoscopic cues, and the geometric field of view used to create the visual image projected on the visual display. In each study, subjects navigated a virtual environment and completed a questionnaire designed to ascertain the level of presence experienced by the participant within the virtual world. Specifically, two aspects of presence were evaluated: (1) the sense of “being there” and (2) the fidelity of the interaction between the virtual environment participant and the virtual world. Not surprisingly, the results of the first and second study indicated that the reported level of presence was significantly higher when head tracking and stereoscopic cues were provided. The results from the third study showed that the geometric field of view used to design the visual display highly influenced the reported level of presence, with more presence associated with a 50 and 90° geometric field of view when compared to a narrower 10° geometric field of view. The results also indicated a significant positive correlation between the reported level of presence and the fidelity of the interaction between the virtual environment participant and the virtual world. Finally, it was shown that the survey questions evaluating several aspects of presence produced reliable responses across questions and studies, indicating that the questionnaire is a useful tool when evaluating presence in virtual environments.


2021 ◽  
Author(s):  
Sergo Martirosov ◽  
Marek Bureš ◽  
Tomáš Zítka

AbstractIt is known that virtual reality (VR) experience may cause cyber sickness. One aspect of VR is an immersion or otherwise sense of presence, the sense of feeling oneself in a virtual world. In this paper an experiment which was conducted in order to find the link between level of immersion and cyber sickness felt by participants is presented. Eighty-nine participants aged between 19 and 36 years have been equally divided into four groups with different level of VR immersion. The low-immersive group was represented by PC with monoscopic screen, the semi-immersive group was represented by CAVE with stereoscopic projector, the fully immersive group was represented by VR head-mounted display, and the last group was the control group without any kind of immersion. The task for the participants was to navigate through the maze for a specified amount of time (10 min). The Simulator Sickness Questionnaire was used as a subjective measure tool for cyber sickness level and Grooved Pegboard Test for assessing the fine dexterity, both before and after the experiment. Regarding the time spend in VR the fully immersive environment had the biggest problems as more than half of the participants had to stop before 10 min (p < 0.001). Concerning the cyber sickness, the significant increase in nausea score between pre-test and post-test scores has been observed in semi-immersive group (p = 0.0018) and fully immersive group (p < 0.0001). The increase in oculomotor score was smaller. The significant difference was noted only in fully immersive group (p = 0.0449). In spite of great nausea factor after the VR immersion the participants did not show a decrease of fine dexterity in any group (p < 0.001).


2016 ◽  
Vol 15 (2) ◽  
pp. 3-17 ◽  
Author(s):  
J. Cecil ◽  
Miguel Pirela-Cruz

In this paper we discuss the creation of an information centric framework to develop a virtual reality environment for micro surgery. An information model of micro surgery was built through interactions with an expert micro surgeon using the engineering Enterprise Modeling Language (eEML). The overall approach and architecture of the micro surgical environment is discussed. An enterprise level surgical manager, surgical planner and other components work together to enable the functioning of the virtual environment for micro surgery. Such virtual environments are essential to educating / training young budding surgeons..


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Athira Azmi ◽  
Rahinah Ibrahim ◽  
Maszura Abdul Ghafar ◽  
Ali Rashidi

PurposeThis paper aims to investigate the potentials of virtual reality (VR) for residential real estate marketing to influence house purchase intention.Design/methodology/approachBased on the relevant literature in consumer behaviour, this study hypothesised the relationships between atmosphere with pleasure and arousal emotions and the subsequent influence of emotions towards house purchase intention in a virtual environment. A within-subjects experimental design was conducted with 60 real potential homebuyers to test the hypotheses. Data were analysed using paired samples t-test and partial least squares-structural equation modelling (PLS-SEM).FindingsResults revealed that there is a significant difference in the atmosphere and house purchase intention between real and virtual environments. On the other hand, pleasure and arousal emotions evoked in real and virtual environments showed no significant difference. The results show that the atmosphere significantly affects pleasure and arousal, where pleasure, in turn, has a significant effect on purchase intention, and arousal showed an insignificant effect on purchase intention in the virtual environment.Research limitations/implicationsDue to budget limitation, this study was constrained to the use of HTC Vive as the VR equipment and evaluation of only one type of housing design.Practical implicationsThis study contributes to facilitating the revitalisation of real estate marketing with the integration of VR by providing notable empirical results and recommendations based on the research findings.Originality/valueThis study extends the current knowledge from the stimulus-organism-response framework for a smart real estate marketing strategy using VR.


2012 ◽  
Vol 21 (2) ◽  
pp. 119-141 ◽  
Author(s):  
Lane Phillips ◽  
Victoria Interrante ◽  
Michael Kaeding ◽  
Brian Ries ◽  
Lee Anderson

In previous work, we have found significant differences in the accuracy with which people make initial spatial judgments in different types of head-mounted, display-based immersive virtual environments (IVEs; Phillips, Interrante, Kaeding, Ries, & Anderson, 2010). In particular, we have found that people tend to less severely underestimate egocentric distances in a virtual environment that is a photorealistic replica of a real place that they have recently visited than when the virtual environment is either a photorealistic replica of an unfamiliar place, or a nonphotorealistically (NPR) portrayed version of a familiar space. We have also noted significant differences in the effect of environment type on distance perception accuracy between individual participants. In this paper, we report the results of two experiments that seek further insight into these phenomena, focusing on factors related to depth of presence in the virtual environment. In our reported first experiment, we immersed users (between-subjects) in one of the three different types of IVEs and asked them to perform a series of well-defined tasks along a delimited path, first in a control version of the environment, and then in a stressful variant in which the floor around the marked path was cut away to reveal a 20-ft drop. We assessed participants' sense of presence during each trial using a diverse set of measures, including: questionnaires, recordings of heart rate and galvanic skin response, and gait metrics derived from tracking data. We computed the differences in each of these measures between the stressful and nonstressful versions of each environment, and then compared the changes due to stress between the different virtual environment conditions. Pooling the data over all participants in each group, we found significant physiological indications of stress after the appearance of the pit in all three environments, but we did not find significant differences in the magnitude of the stress response between the different virtual environment locales. We also did not find any significant difference in the level of subjective presence reported in each environment. However, we did find significant differences in gait: participants in the photorealistic replica room showed a significantly greater reduction in stride speed and stride length between the control and pit version of the room than did participants in either the photorealistically rendered nonreplica environment or the NPR replica environment conditions. Our second experiment, conducted with a new set of participants, sought to more directly investigate potential correlations between distance estimation accuracy and personality, stress response, and reported sense of presence, comparatively across different immersive virtual environment conditions. We used pretest questionnaires to assess a variety of personality measures, and then randomly immersed participants (between-subjects) in either the photorealistic replica or photorealistic non-replica environment and assessed the accuracy of their egocentric distance judgments in that IVE, followed by control trials in a neutral, real-world location. We then had participants go through the same set of tasks as in our first experiment while we collected physiological measures of their stress level and tracked their gait, and we compared the changes in these measures between the neutral and pit-enhanced versions of the environment. Finally, we had people fill out a brief presence questionnaire.Analyzing all of these data, we found that participants made significantly greater distance estimation errors in the unfamiliar room environment than in the replica room environment, but no other differences between the two environments were significant. We found significant positive correlation between several of the personality measures, but we did not find any notable significant correlations between personality and presence, or between either personality or presence and gait changes or distance estimation accuracy. These results suggest to us that the relationship between personality, presence, and performance in IVEs is complicated and not easily captured by existing measures.


2003 ◽  
Vol 51 (4) ◽  
pp. 302-315 ◽  
Author(s):  
Evelyn K. Orman

This study is an examination of the effect of computer-generated virtual reality graded exposure on the physiological and psychological responses of performing musicians. Eight university saxophone majors, five men and three women, participated in twelve 15- to 20-minute weekly practice sessions during which they were immersed in one of four different virtual environments designed to elicit various anxiety levels. Baseline heart rates and subjective measurements were taken prior to immersion and continued throughout the exposure period. In addition, heart rate and subjective measurements were recorded for three live performances given by each subject before beginning the virtual reality exposure and after completion of the sixth and the twelfth exposure sessions. Findings indicated that the virtual environments did elicit a sense of presence and may have provided the means for desensitization. Heart-rate readings and psychological indications of anxiety did not always correspond.


Author(s):  
Randall Spain ◽  
Benjamin Goldberg ◽  
Jeffrey Hansberger ◽  
Tami Griffith ◽  
Jeremy Flynn ◽  
...  

Recent advances in technology have made virtual environments, virtual reality, augmented reality, and simulations more affordable and accessible to researchers, companies, and the general public, which has led to many novel use cases and applications. A key objective of human factors research and practice is determining how these technology-rich applications can be designed and applied to improve human performance across a variety of contexts. This session will demonstrate some of the distinct and diverse uses of virtual environments and mixed reality environments in an alternative format. The session will begin with each demonstrator providing a brief overview of their virtual environment (VE) and a description of how it has been used to address a particular problem or research need. Following the description portion of the session, each VE will be set-up at a demonstration station in the room, and session attendees will be encouraged to directly interact with the virtual environment and ask demonstrators questions about their research and inquire about the effectiveness of using VE for research, training, and evaluation purposes. The overall objective of this alternative session is to increase the awareness of how human factors professionals use VE technologies and increase the awareness of the capabilities and limitations of VE in supporting the work of HF professionals.


2019 ◽  
Vol 01 (01) ◽  
pp. 24-34 ◽  
Author(s):  
Smys S ◽  
Jennifer S. Raj ◽  
Krishna raj N.

Virtual reality (VR) technology has the potential to make a person experience anything, anytime, anywhere. It has the ability to influence the human brain that it assumes to be present somewhere that it is really not. In this paper, we exploit this application of the VR technology to simulate virtual environments that can help with PTSD therapy for people affected by trauma due to accident, war, sexual abuse and so on. Several sensors are used to gather the user movements on a motion platform and replicate it in the virtual environment with the help of a Raspberry Pi board and Unreal Developer’s kit. It has flexible interfaces that the clinician can modify the virtual environment according to the requirement for the patient.


2018 ◽  
Vol 18 (2) ◽  
pp. 30-57
Author(s):  
Shamima Yasmin

This paper conducts an extensive survey on existing Virtual Reality (VR)-based rehabilitation approaches in the context of different types of impairments: mobility, cognitive, and visual. Some VR-based assistive technologies involve repetitions of body movements, some require persistent mental exercise, while some work as sensory substitution systems. A multi-modal VR-based environment can incorporate a number of senses, (i.e., visual, auditory, or haptic) into the system and can be an immense source of motivation and engagement in comparison with traditional rehabilitation therapy. This survey categorizes virtual environments on the basis of different available modalities. Each category is again subcategorized by the types of impairments while introducing available devices and interfaces. Before concluding the survey, the paper also briefly focuses on some issues with existing VR-based approaches that need to be optimized to exploit the utmost benefit of virtual environment-based rehabilitation systems .


2010 ◽  
pp. 180-193 ◽  
Author(s):  
F. Steinicke ◽  
G. Bruder ◽  
J. Jerald ◽  
H. Frenz

In recent years virtual environments (VEs) have become more and more popular and widespread due to the requirements of numerous application areas in particular in the 3D city visualization domain. Virtual reality (VR) systems, which make use of tracking technologies and stereoscopic projections of three-dimensional synthetic worlds, support better exploration of complex datasets. However, due to the limited interaction space usually provided by the range of the tracking sensors, users can explore only a portion of the virtual environment (VE). Redirected walking allows users to walk through large-scale immersive virtual environments (IVEs) such as virtual city models, while physically remaining in a reasonably small workspace by intentionally injecting scene motion into the IVE. With redirected walking users are guided on physical paths that may differ from the paths they perceive in the virtual world. The authors have conducted experiments in order to quantify how much humans can unknowingly be redirected. In this chapter they present the results of this study and the implications for virtual locomotion user interfaces that allow users to view arbitrary real world locations, before the users actually travel there in a natural environment.


Sign in / Sign up

Export Citation Format

Share Document