scholarly journals Merger of galactic cores made of ultralight bosonic dark matter

2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 75
Author(s):  
F. S. Guzmán Murillo ◽  
I. Alvarez-Ríos ◽  
J. A. González

We study binary mergers of ultralight bosonic dark matter cores by solving the Gross-Pitaevskii- Poisson system of equations. The analysis centers on the dynamics of the relaxation process and the behavior of the configuration resulting from the merger, including the Gravitational Cooling with its corresponding emission of mass and angular momentum. The oscillations of density and size of the final configuration are characterized, indicating that for the equal mass case the dependency of the amplitude and frequency of these oscillations on the impact parameter of the pre-merger config- uration is linear. The amplitude of these oscillations changes by a factor of two or more indicating the final configuration does not approach a clear stationary state even though it oscillates around a virialized state. For the unequal mass case, global quantities also indicate the final configuration oscillates around a virialized state, although the density does not show a dominant oscillation mode. Also the evolution of the angular momentum prior and post merger is analyzed in all cases. 

2020 ◽  
Vol 493 (3) ◽  
pp. 4551-4569 ◽  
Author(s):  
Danail Obreschkow ◽  
Pascal J Elahi ◽  
Claudia del P Lagos ◽  
Rhys J J Poulton ◽  
Aaron D Ludlow

ABSTRACT Linking the properties of galaxies to the assembly history of their dark matter haloes is a central aim of galaxy evolution theory. This paper introduces a dimensionless parameter s ∈ [0, 1], the ‘tree entropy’, to parametrize the geometry of a halo’s entire mass assembly hierarchy, building on a generalization of Shannon’s information entropy. By construction, the minimum entropy (s = 0) corresponds to smoothly assembled haloes without any mergers. In contrast, the highest entropy (s = 1) represents haloes grown purely by equal-mass binary mergers. Using simulated merger trees extracted from the cosmological N-body simulation SURFS, we compute the natural distribution of s, a skewed bell curve peaking near s = 0.4. This distribution exhibits weak dependences on halo mass M and redshift z, which can be reduced to a single dependence on the relative peak height δc/σ(M, z) in the matter perturbation field. By exploring the correlations between s and global galaxy properties generated by the SHARK semi-analytic model, we find that s contains a significant amount of information on the morphology of galaxies – in fact more information than the spin, concentration, and assembly time of the halo. Therefore, the tree entropy provides an information-rich link between galaxies and their dark matter haloes.


2021 ◽  
Vol 508 (1) ◽  
pp. 1533-1542
Author(s):  
Ludovica Varisco ◽  
Elisa Bortolas ◽  
Massimo Dotti ◽  
Alberto Sesana

ABSTRACT Massive black hole binaries (MBHBs) with masses of ∼104 to $\sim 10^{10} \, \mathrm{M}_{\odot {}}$ are one of the main targets for currently operating and forthcoming space-borne gravitational wave observatories. In this paper, we explore the effect of the stellar host rotation on the bound binary hardening efficiency, driven by three-body stellar interactions. As seen in previous studies, we find that the centre of mass (CoM) of a prograde MBHB embedded in a rotating environment starts moving on a nearly circular orbit about the centre of the system shortly after the MBHB binding. In our runs, the oscillation radius is ≈ 0.25 (≈ 0.1) times the binary influence radius for equal mass MBHBs (MBHBs with mass ratio 1:4). Conversely, retrograde binaries remain anchored about the centre of the host. The binary shrinking rate is twice as fast when the binary CoM exhibits a net orbital motion, owing to a more efficient loss cone repopulation even in our spherical stellar systems. We develop a model that captures the CoM oscillations of prograde binaries; we argue that the CoM angular momentum gain per time unit scales with the internal binary angular momentum, so that most of the displacement is induced by stellar interactions occurring around the time of MBHB binding, while the subsequent angular momentum enhancement gets eventually quashed by the effect of dynamical friction. The effect of the background rotation on the MBHB evolution may be relevant for LISA sources, that are expected to form in significantly rotating stellar systems.


2020 ◽  
Vol 495 (1) ◽  
pp. 502-509 ◽  
Author(s):  
Yu Morinaga ◽  
Tomoaki Ishiyama

ABSTRACT Dark matter haloes are formed through hierarchical mergers of smaller haloes in large-scale cosmic environments, and thus anisotropic subhalo accretion through cosmic filaments has some impacts on halo structures. Recent studies using cosmological simulations have shown that the orientations of haloes correlate with the direction of cosmic filaments, and these correlations significantly depend on the halo mass. Using high-resolution cosmological N-body simulations, we quantified the strength of filamentary subhalo accretion for galaxy- and group-sized host haloes (Mhost = 5 × 1011–13 M⊙) by regarding the entry points of subhaloes as filaments and present statistical studies on how the shape and orientation of host haloes at redshift zero correlate with the strength of filamentary subhalo accretion. We confirm previous studies that found the host halo mass dependence of the alignment between orientations of haloes and filaments. We also show that, for the first time, the shape and orientation of haloes weakly correlate with the strength of filamentary subhalo accretion even if the host halo masses are the same. Minor-to-major axial ratios of haloes tend to decrease as their filamentary accretion gets stronger. Haloes with highly anisotropic accretion become more spherical or oblate, while haloes with isotropic accretion become more prolate or triaxial. For haloes with strong filamentary accretion, their major axes are preferentially aligned with the filaments, while their angular momentum vectors tend to be slightly more misaligned.


2010 ◽  
Author(s):  
Tanja Rindler-Daller ◽  
Paul R. Shapiro ◽  
Daniel J. Whalen ◽  
Volker Bromm ◽  
Naoki Yoshida

Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


2021 ◽  
Vol 503 (4) ◽  
pp. 5091-5099
Author(s):  
Dragan Slavkov Hajdukovic ◽  
Sergej Walter

ABSTRACT In a recent paper, quantum vacuum was considered as a source of gravity, and the simplest, phenomenon, the gravitational polarization of the quantum vacuum by an immersed point-like body, was studied. In this paper, we have derived the effective gravitational charge density of the quantum vacuum, caused by two immersed point-like bodies. Among others, the obtained result proves that quantum vacuum can have regions with a negative effective gravitational charge density. Hence, quantum vacuum, the ‘ocean’ in which all matter of the Universe is immersed, acts as a complex fluid with a very variable gravitational charge density that might include both positive and negative densities; a crucial prediction that can be tested within the Solar system. In the general case of ${N \ge {\rm{3}}}$ point-like bodies, immersed in the quantum vacuum, the analytical solutions are not possible, and the use of numerical methods is inevitable. The key point is that an appropriate numerical method, for the calculation of the effective gravitational charge density of the quantum vacuum induced by N immersed bodies, might be crucial in description of galaxies, without the involvement of dark matter or a modification of gravity. The development of such a valuable numerical method, is not possible, without a previous (and in this study achieved) understanding of the impact of a two-body system.


Author(s):  
Alexandres Lazar ◽  
James S Bullock ◽  
Michael Boylan-Kolchin ◽  
Robert Feldmann ◽  
Onur Çatmabacak ◽  
...  

Abstract A promising route for revealing the existence of dark matter structures on mass scales smaller than the faintest galaxies is through their effect on strong gravitational lenses. We examine the role of local, lens-proximate clustering in boosting the lensing probability relative to contributions from substructure and unclustered line-of-sight (LOS) haloes. Using two cosmological simulations that can resolve halo masses of Mhalo ≃ 109 M⊙ (in a simulation box of length Lbox ∼ 100 Mpc) and 107 M⊙ (Lbox ∼ 20 Mpc), we demonstrate that clustering in the vicinity of the lens host produces a clear enhancement relative to an assumption of unclustered haloes that persists to >20 Rvir. This enhancement exceeds estimates that use a two-halo term to account for clustering, particularly within 2 − 5 Rvir. We provide an analytic expression for this excess, clustered contribution. We find that local clustering boosts the expected count of 109 M⊙ perturbing haloes by ${\sim }35{{\ \rm per\ cent}}$ compared to substructure alone, a result that will significantly enhance expected signals for low-redshift (zl ≃ 0.2) lenses, where substructure contributes substantially compared to LOS haloes. We also find that the orientation of the lens with respect to the line of sight (e.g. whether the line of sight passes through the major axis of the lens) can also have a significant effect on the lensing signal, boosting counts by an additional $\sim 50{{\ \rm per\ cent}}$ compared to a random orientations. This could be important if discovered lenses are biased to be oriented along their principal axis.


2015 ◽  
Vol 30 (18) ◽  
pp. 1550089 ◽  
Author(s):  
A. L. dos Santos ◽  
D. Hadjimichef

An extension of the Standard Model (SM) is studied, in which two new vector bosons are introduced, a first boson Z' coupled to the SM by the usual minimal coupling, producing an enlarged gauge sector in the SM. The second boson A' field, in the dark sector of the model, remains massless and originates a dark photon γ'. A hybrid mixing scenario is considered based on a combined Higgs and Stueckelberg mechanisms. In a Compton-like process, a photon scattered by a weakly interacting massive particles (WIMP) is converted into a dark photon. This process is studied, in an astrophysical application obtaining an estimate of the impact on stellar cooling of white dwarfs and neutron stars.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Pavel Fileviez Pérez ◽  
Alexis D. Plascencia

Abstract New sources of CP violation beyond the Standard Model are crucial to explain the baryon asymmetry in the Universe. We discuss the impact of new CP violating interactions in theories where a dark matter candidate is predicted by the cancellation of gauge anomalies. In these theories, the constraint on the dark matter relic density implies an upper bound on the new symmetry breaking scale from which all new states acquire their masses. We investigate in detail the predictions for electric dipole moments and show that if the relevant CP-violating phase is large, experiments such as the ACME collaboration will be able to fully probe the theory.


Sign in / Sign up

Export Citation Format

Share Document