scholarly journals A Research Trend of the Biological Control of Food by Applying Natural Antimicrobial Compounds

2007 ◽  
Vol 54 (10) ◽  
pp. 425-435 ◽  
Author(s):  
Yasuhiro Inatsu ◽  
Shinichi Kawamoto
2021 ◽  
Vol 11 ◽  
Author(s):  
Yunge Liu ◽  
Lina Wu ◽  
Jina Han ◽  
Pengcheng Dong ◽  
Xin Luo ◽  
...  

The aim of this study was to assess the efficacy of four natural antimicrobial compounds (cinnamaldehyde, eugenol, resveratrol and thymoquinone) plus a control chemical disinfectant (sodium hypochlorite) in inhibiting biofilm formation by Listeria monocytogenes CMCC54004 (Lm 54004) at a minimum inhibitory concentration (MIC) and sub-MICs. Crystal violet staining assay and microscopic examination were employed to investigate anti-biofilm effects of the evaluated compounds, and a real-time PCR assay was used to investigate the expression of critical genes by Lm 54004 biofilm. The results showed that five antimicrobial compounds inhibited Lm 54004 biofilm formation in a dose dependent way. Specifically, cinnamaldehyde and resveratrol showed better anti-biofilm effects at 1/4 × MIC, while sodium hypochlorite exhibited the lowest inhibitory rates. A swimming assay confirmed that natural compounds at sub-MICs suppressed Lm 54004 motility to a low degree. Supporting these findings, expression analysis showed that all four natural compounds at 1/4 × MIC significantly down-regulated quorum sensing genes (agrA, agrC, and agrD) rather than suppressing the motility- and flagella-associated genes (degU, motB, and flaA). This study revealed that sub-MICs of natural antimicrobial compounds reduced biofilm formation by suppressing the quorum sensing system rather than by inhibiting flagella formation.


2014 ◽  
pp. 765-801 ◽  
Author(s):  
P. Michael Davidson ◽  
T. Matthew Taylor ◽  
Shannon E. Schmidt

2021 ◽  
Vol 5 ◽  
Author(s):  
Sandra Pacios-Michelena ◽  
Cristobal N. Aguilar González ◽  
Olga B. Alvarez-Perez ◽  
Raul Rodriguez-Herrera ◽  
Mónica Chávez-González ◽  
...  

One of the relevant problems in today's agriculture is related to phytopathogenic microorganisms that cause between 30–40% of crop losses. Synthetic chemical pesticides and antibiotics have brought human and environmental health problems and microbial resistance to these treatments. So, the search for natural alternatives is necessary. The genus Streptomyces have broad biotechnological potential, being a promising candidate for the biocontrol of phytopathogenic microorganisms. The efficacy of some species of this genus in plant protection and their continued presence in the intensely competitive rhizosphere is due to its great potential to produce a wide variety of soluble bioactive secondary metabolites and volatile organic compounds. However, more attention is still needed to develop novel formulations that could increase the shelf life of streptomycetes, ensuring their efficacy as a microbial pesticide. In this sense, encapsulation offers an advantageous and environmentally friendly option. The present review aims to describe some phytopathogenic microorganisms with economic importance that require biological control. In addition, it focuses mainly on the Streptomyces genus as a great producer of secondary metabolites that act on other microorganisms and plants, exercising its role as biological control. The review also covers some strategies and products based on Streptomyces and the problems of its application in the field.


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 405 ◽  
Author(s):  
Francisco Javier Álvarez-Martínez ◽  
Enrique Barrajón-Catalán ◽  
Vicente Micol

Drug-resistant bacteria pose a serious threat to human health worldwide. Current antibiotics are losing efficacy and new antimicrobial agents are urgently needed. Living organisms are an invaluable source of antimicrobial compounds. The antimicrobial activity of the most representative natural products of animal, bacterial, fungal and plant origin are reviewed in this paper. Their activity against drug-resistant bacteria, their mechanisms of action, the possible development of resistance against them, their role in current medicine and their future perspectives are discussed. Electronic databases such as PubMed, Scopus and ScienceDirect were used to search scientific contributions until September 2020, using relevant keywords. Natural compounds of heterogeneous origins have been shown to possess antimicrobial capabilities, including against antibiotic-resistant bacteria. The most commonly found mechanisms of antimicrobial action are related to protein biosynthesis and alteration of cell walls and membranes. Various natural compounds, especially phytochemicals, have shown synergistic capacity with antibiotics. There is little literature on the development of specific resistance mechanisms against natural antimicrobial compounds. New technologies such as -omics, network pharmacology and informatics have the potential to identify and characterize new natural antimicrobial compounds in the future. This knowledge may be useful for the development of future therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document