Creation and evaluation of the source material for the selection of erectoid forms of corn

Author(s):  
Yu. V. Belokur ◽  
◽  
L. O. Ryabovol

Scientific publications of domestic and foreign scientists are analyzed, new approaches to solving the problem of obtaining the original breeding material of corn are identified. The necessity of creation of lines and hybrids of culture with erectile arrangement of a leaf plate is substantiated. It is confirmed that the primary task of the selection process is to group the collection of samples and obtain starting materials for heterosis selection, in particular, on the basis of CSF. To expand genetic diversity and reduce the period of creation of the original forms, it is advisable to use biotechnological methods. Stable production of corn grain is possible in the presence of hybrids with high potential productivity, resistance to pests, diseases, unfavorable environmental factors that meet the modern requirements of intensive technology. A clear understanding of the improved morphological and physiological type of plants and the elucidation of the biological reasons that limit their productivity in certain environmental conditions, contribute to an increase in the efficiency of using corn hybrids and the profitability of agricultural production. When creating hybrids, it is critical to select the parent components that will ensure their high performance. To conduct heterotic selection, the presence of homozygous lines is necessary. Currently, in order to achieve significant success in maize breeding, great attention must be paid to the creation of new starting material with a wide genetic diversity and in particular with an erectoid placement of the leaf plate. The necessity of creating lines and hybrids of culture with erectoid placement of the leaf plate is substantiated. It was confirmed that the primary task of the breeding process is grouping the collection of samples and obtaining initial materials for conducting heterotic breeding, in particular, based on CMS. To expand genetic diversity and shorten the period for creating initial forms, it is advisable to use biotechnological methods.

1970 ◽  
Vol 21 ◽  
pp. 243-247
Author(s):  
O. V. Boiko ◽  
O. F. Honchar ◽  
O. M. Havrysh ◽  
Ye. A. Shevchenko

Aim. Clarification of waste polymorphism of different breeds of rabbits and their meat productivity in modern rabbit farm. Methods. Livestock combined with ISSR-analysis of genetic diversity that characterize populations of rabbits of different breeds. Results. Indicators meat productivity rabbit populations studied species differ rates and average daily live weight increments have specialized meat breed versus combined. In addition, the results of ISSR-analysis of three populations of rabbits in Cherkassy region showed relatively high levels of genetic diversity of species. Conclusions. High performance speakers live weight of young rabbits New Zealand and Californian species can be explained lengthy selection process in the areas of high-intensity growth animals breed Poltava silver combinations breed. Genetic studies found that populations are characterized by a sufficient level of polymorphism. The proportion of waste for GST genetic diversity ISSR-marker (ACC) 6G was 72.4 % and for (AG) 9C and (GA) 9C was lower by 33.7 % and 27.8 % respectively. The highest population diversity DST turned on (ACC) 6G ISSR-marker, and the lowest – (AG) 9C. Keywords: breed rabbits, live weight, the study population, ISSR-markers.


2001 ◽  
Vol 17 (1) ◽  
pp. 48-55 ◽  
Author(s):  
Juan Botella ◽  
María José Contreras ◽  
Pei-Chun Shih ◽  
Víctor Rubio

Summary: Deterioration in performance associated with decreased ability to sustain attention may be found in long and tedious task sessions. The necessity for assessing a number of psychological dimensions in a single session often demands “short” tests capable of assessing individual differences in abilities such as vigilance and maintenance of high performance levels. In the present paper two tasks were selected as candidates for playing this role, the Abbreviated Vigilance Task (AVT) by Temple, Warm, Dember, LaGrange and Matthews (1996) and the Continuous Attention Test (CAT) by Tiplady (1992) . However, when applied to a sample of 829 candidates in a job-selection process for air-traffic controllers, neither of them showed discriminative capacity. In a second study, an extended version of the CAT was applied to a similar sample of 667 subjects, but also proved incapable of properly detecting individual differences. In short, at least in a selection context such as that studied here, neither of the tasks appeared appropriate for playing the role of a “short” test for discriminating individual differences in performance deterioration in sustained attention.


2018 ◽  
Vol 14 (4) ◽  
pp. 734-747 ◽  
Author(s):  
Constance de Saint Laurent

There has been much hype, over the past few years, about the recent progress of artificial intelligence (AI), especially through machine learning. If one is to believe many of the headlines that have proliferated in the media, as well as in an increasing number of scientific publications, it would seem that AI is now capable of creating and learning in ways that are starting to resemble what humans can do. And so that we should start to hope – or fear – that the creation of fully cognisant machine might be something we will witness in our life time. However, much of these beliefs are based on deep misconceptions about what AI can do, and how. In this paper, I start with a brief introduction to the principles of AI, machine learning, and neural networks, primarily intended for psychologists and social scientists, who often have much to contribute to the debates surrounding AI but lack a clear understanding of what it can currently do and how it works. I then debunk four common myths associated with AI: 1) it can create, 2) it can learn, 3) it is neutral and objective, and 4) it can solve ethically and/or culturally sensitive problems. In a third and last section, I argue that these misconceptions represent four main dangers: 1) avoiding debate, 2) naturalising our biases, 3) deresponsibilising creators and users, and 4) missing out some of the potential uses of machine learning. I finally conclude on the potential benefits of using machine learning in research, and thus on the need to defend machine learning without romanticising what it can actually do.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Sirlene Viana de Faria ◽  
Leandro Tonello Zuffo ◽  
Wemerson Mendonça Rezende ◽  
Diego Gonçalves Caixeta ◽  
Hélcio Duarte Pereira ◽  
...  

Abstract Background The characterization of genetic diversity and population differentiation for maize inbred lines from breeding programs is of great value in assisting breeders in maintaining and potentially increasing the rate of genetic gain. In our study, we characterized a set of 187 tropical maize inbred lines from the public breeding program of the Universidade Federal de Viçosa (UFV) in Brazil based on 18 agronomic traits and 3,083 single nucleotide polymorphisms (SNP) markers to evaluate whether this set of inbred lines represents a panel of tropical maize inbred lines for association mapping analysis and investigate the population structure and patterns of relationships among the inbred lines from UFV for better exploitation in our maize breeding program. Results Our results showed that there was large phenotypic and genotypic variation in the set of tropical maize inbred lines from the UFV maize breeding program. We also found high genetic diversity (GD = 0.34) and low pairwise kinship coefficients among the maize inbred lines (only approximately 4.00 % of the pairwise relative kinship was above 0.50) in the set of inbred lines. The LD decay distance over all ten chromosomes in the entire set of maize lines with r2 = 0.1 was 276,237 kb. Concerning the population structure, our results from the model-based STRUCTURE and principal component analysis methods distinguished the inbred lines into three subpopulations, with high consistency maintained between both results. Additionally, the clustering analysis based on phenotypic and molecular data grouped the inbred lines into 14 and 22 genetic divergence clusters, respectively. Conclusions Our results indicate that the set of tropical maize inbred lines from UFV maize breeding programs can comprise a panel of tropical maize inbred lines suitable for a genome-wide association study to dissect the variation of complex quantitative traits in maize, mainly in tropical environments. In addition, our results will be very useful for assisting us in the assignment of heterotic groups and the selection of the best parental combinations for new breeding crosses, mapping populations, mapping synthetic populations, guiding crosses that target highly heterotic and yielding hybrids, and predicting untested hybrids in the public breeding program UFV.


Author(s):  
Wenrun Cui ◽  
Meijia Song ◽  
Guixing Jia ◽  
Yu Wang ◽  
Wanfeng Yang ◽  
...  

Abstract Tin (Sn)-based anodes have drawn extensive attention for magnesium ion batteries (MIBs) owing to their low reaction potentials, high theoretical capacities, and compatibility with conventional electrolytes. However, their poor electrochemical reactivity, sluggish kinetics, and large volume changes have obstructed progresses. Additionally, a clear understanding of the Mg storage chemistry is crucial for the development of high-performance MIBs. Here, we prepared self-supporting In-Sn alloy films with different compositions and phase constitutions via a one-step magnetron co-sputtering. As benchmarked with pure Sn film, the single-phase and biphase In-Sn alloy films effectively trigger the alloying reaction of Sn with Mg and further increasing of In significantly improves the electrochemical reactivity of the In-Sn electrodes. More importantly, operando X-ray diffraction was performed to unveil the magnesiation/demagnesiation mechanisms of the In0.2Sn0.8, In0.2Sn0.8/In3Sn and In3Sn electrodes, showing that In0.2Sn0.8 and In3Sn display different Mg storage mechanisms when existing alone or biphase coexisting. Our findings highlight the significance of the electrode design and mechanism investigations for MIBs.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 449 ◽  
Author(s):  
Jiantao Wu ◽  
Qinnan Wang ◽  
Jing Xie ◽  
Yong-Bao Pan ◽  
Feng Zhou ◽  
...  

Sugarcane (Saccharum spp. hybrids) is an important sugar and bioenergy crop with a high aneuploidy, complex genomes and extreme heterozygosity. A good understanding of genetic diversity and population structure among sugarcane parental lines is a prerequisite for sugarcane improvement through breeding. In order to understand genetic characteristics of parental lines used in sugarcane breeding programs in China, 150 of the most popular accessions were analyzed with 21 fluorescence-labeled simple sequence repeats (SSR) markers and high-performance capillary electrophoresis (HPCE). A total of 226 SSR alleles of high-resolution capacity were identified. Among the series obtained from different origins, the YC-series, which contained eight unique alleles, had the highest genetic diversity. Based on the population structure analysis, the principal coordinate analysis (PCoA) and phylogenetic analysis, the 150 accessions were clustered into two distinct sub-populations (Pop1 and Pop2). Pop1 contained the majority of clones introduced to China (including 28/29 CP-series accessions) while accessions native to China clustered in Pop2. The analysis of molecular variance (AMOVA), fixation index (Fst) value and gene flow (Nm) value all indicated the very low genetic differentiation between the two groups. This study illustrated that fluorescence-labeled SSR markers combined with high-performance capillary electrophoresis (HPCE) could be a very useful tool for genotyping of the polyploidy sugarcane. The results provided valuable information for sugarcane breeders to better manage the parental germplasm, choose the best parents to cross, and produce the best progeny to evaluate and select for new cultivar(s).


2020 ◽  
Vol 04 (01) ◽  
pp. 47-50 ◽  
Author(s):  
Ajay Gandhi ◽  
Klaus Görlinger

AbstractCoronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus has spread quickly and become a public health emergency of global concern. Originating in the Wuhan district of China, which has reportedly been declared free of it now, the rest of the world continues to struggle with its severity and spread. While a lot of scientific publications and clinical data are available, newer clinical investigations and experiences continue to evolve, thereby depicting the dynamic nature of the disease and the knowledge around it. Researchers and clinical professionals continue to collect scientific information, clinical data, and evidence to help build a knowledge pool and guidance for the health care professionals to manage those affected with this pandemic disease. As significant and new data emerge, a lot of already available information gets confirmed and updated, while some of it also getting rejected or disapproved. In this article, we aim to put together the scientific and clinical information that is proven so far and the areas where more data or evidence is needed before a clear understanding can be achieved and guidance can be developed.


Crop Science ◽  
2020 ◽  
Vol 60 (2) ◽  
pp. 779-787 ◽  
Author(s):  
Karla Jorge Silva ◽  
Claudia Teixeira Guimarães ◽  
José Henrique Soler Guilhen ◽  
Paulo Evaristo de Oliveira Guimarães ◽  
Sidney Netto Parentoni ◽  
...  

Author(s):  
Edilson Ferneda ◽  
Hercules A. Do Prado ◽  
Alexandre G. Cancian Sobrinho ◽  
Remis Balaniuk

Sign in / Sign up

Export Citation Format

Share Document